Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313893514> ?p ?o ?g. }
- W4313893514 endingPage "615" @default.
- W4313893514 startingPage "598" @default.
- W4313893514 abstract "In recent years, harmful algal blooms (HABs) have increased in their severity and extent in many parts of the world and pose serious threats to local aquaculture, fisheries, and public health. In many cases, the mechanisms triggering and regulating HAB events remain poorly understood. Using underwater microscopy and Residual Neural Network (ResNet-18) to taxonomically classify imaged organisms, we developed a daily abundance record of four potentially harmful algae (Akashiwo sanguinea, Chattonella spp., Dinophysis spp., and Lingulodinium polyedra) and major grazer groups (ciliates, copepod nauplii, and copepods) from August 2017 to November 2020 at Scripps Institution of Oceanography pier, a coastal location in the Southern California Bight. Random Forest algorithms were used to identify the optimal combination of environmental and ecological variables that produced the most accurate abundance predictions for each taxon. We developed models with high prediction accuracy for A. sanguinea ( R 2 = 0.79 ± 0.06 ), Chattonella spp. ( R 2 = 0.63 ± 0.06 ), and L. polyedra ( R 2 = 0.72 ± 0.08 ), whereas models for Dinophysis spp. showed lower prediction accuracy ( R 2 = 0.24 ± 0.07 ). Offshore nutricline depth and indices describing climate variability, including El Niño Southern Oscillation, Pacific Decadal Oscillation, and North Pacific Gyre Oscillation, that influence regional-scale ocean circulation patterns and environmental conditions, were key predictor variables for these HAB taxa. These metrics of regional-scale processes were generally better predictors of HAB taxa abundances at this coastal location than the in situ environmental measurements. Ciliate abundance was an important predictor of Chattonella and Dinophysis spp., but not of A. sanguinea and L. polyedra. Our findings indicate that combining regional and local environmental factors with microzooplankton populations dynamics can improve real-time HAB abundance forecasts." @default.
- W4313893514 created "2023-01-10" @default.
- W4313893514 creator A5004803858 @default.
- W4313893514 creator A5019544749 @default.
- W4313893514 creator A5026533083 @default.
- W4313893514 creator A5030792189 @default.
- W4313893514 creator A5042300699 @default.
- W4313893514 creator A5050401081 @default.
- W4313893514 creator A5053373179 @default.
- W4313893514 creator A5058646393 @default.
- W4313893514 creator A5070167352 @default.
- W4313893514 creator A5089264411 @default.
- W4313893514 creator A5089559307 @default.
- W4313893514 date "2023-01-09" @default.
- W4313893514 modified "2023-10-01" @default.
- W4313893514 title "Environmental and ecological drivers of harmful algal blooms revealed by automated underwater microscopy" @default.
- W4313893514 cites W1529219153 @default.
- W4313893514 cites W1644892302 @default.
- W4313893514 cites W1904781970 @default.
- W4313893514 cites W1992771976 @default.
- W4313893514 cites W2008195231 @default.
- W4313893514 cites W2019167831 @default.
- W4313893514 cites W2021094955 @default.
- W4313893514 cites W2021893758 @default.
- W4313893514 cites W2029242030 @default.
- W4313893514 cites W2030197528 @default.
- W4313893514 cites W2030563238 @default.
- W4313893514 cites W2031485064 @default.
- W4313893514 cites W2040914273 @default.
- W4313893514 cites W2050685088 @default.
- W4313893514 cites W2052501806 @default.
- W4313893514 cites W2052584778 @default.
- W4313893514 cites W2052849655 @default.
- W4313893514 cites W2053880292 @default.
- W4313893514 cites W2073834256 @default.
- W4313893514 cites W2082739266 @default.
- W4313893514 cites W2085231497 @default.
- W4313893514 cites W2096555055 @default.
- W4313893514 cites W2108611527 @default.
- W4313893514 cites W2110386988 @default.
- W4313893514 cites W2117122701 @default.
- W4313893514 cites W2118262336 @default.
- W4313893514 cites W2139173136 @default.
- W4313893514 cites W2159827844 @default.
- W4313893514 cites W2166459977 @default.
- W4313893514 cites W2194775991 @default.
- W4313893514 cites W2521848664 @default.
- W4313893514 cites W2564530554 @default.
- W4313893514 cites W2594325430 @default.
- W4313893514 cites W2605489888 @default.
- W4313893514 cites W2734947330 @default.
- W4313893514 cites W2885619964 @default.
- W4313893514 cites W2885740802 @default.
- W4313893514 cites W2895020556 @default.
- W4313893514 cites W2897819805 @default.
- W4313893514 cites W2905643881 @default.
- W4313893514 cites W2945815522 @default.
- W4313893514 cites W2950674490 @default.
- W4313893514 cites W2951839389 @default.
- W4313893514 cites W3002580698 @default.
- W4313893514 cites W3002769387 @default.
- W4313893514 cites W3005300437 @default.
- W4313893514 cites W3013408481 @default.
- W4313893514 cites W3017808827 @default.
- W4313893514 cites W3031036394 @default.
- W4313893514 cites W3034226799 @default.
- W4313893514 cites W3038262683 @default.
- W4313893514 cites W3081722472 @default.
- W4313893514 cites W3092144848 @default.
- W4313893514 cites W3093905295 @default.
- W4313893514 cites W3094054616 @default.
- W4313893514 cites W3118195737 @default.
- W4313893514 cites W3134064718 @default.
- W4313893514 cites W3157890379 @default.
- W4313893514 cites W3171366087 @default.
- W4313893514 cites W354387912 @default.
- W4313893514 cites W4282000490 @default.
- W4313893514 cites W938316301 @default.
- W4313893514 doi "https://doi.org/10.1002/lno.12297" @default.
- W4313893514 hasPublicationYear "2023" @default.
- W4313893514 type Work @default.
- W4313893514 citedByCount "2" @default.
- W4313893514 countsByYear W43138935142023 @default.
- W4313893514 crossrefType "journal-article" @default.
- W4313893514 hasAuthorship W4313893514A5004803858 @default.
- W4313893514 hasAuthorship W4313893514A5019544749 @default.
- W4313893514 hasAuthorship W4313893514A5026533083 @default.
- W4313893514 hasAuthorship W4313893514A5030792189 @default.
- W4313893514 hasAuthorship W4313893514A5042300699 @default.
- W4313893514 hasAuthorship W4313893514A5050401081 @default.
- W4313893514 hasAuthorship W4313893514A5053373179 @default.
- W4313893514 hasAuthorship W4313893514A5058646393 @default.
- W4313893514 hasAuthorship W4313893514A5070167352 @default.
- W4313893514 hasAuthorship W4313893514A5089264411 @default.
- W4313893514 hasAuthorship W4313893514A5089559307 @default.
- W4313893514 hasConcept C111368507 @default.
- W4313893514 hasConcept C120305227 @default.
- W4313893514 hasConcept C127313418 @default.