Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313893521> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4313893521 endingPage "1061" @default.
- W4313893521 startingPage "1048" @default.
- W4313893521 abstract "Abstract Cancer is more alarming in modern days due to its identification at later stages. Among cancers, lung, liver and colon cancers are the leading cause of untimely death. Manual cancer identification from histopathological images is time‐consuming and labour‐intensive. Thereby, computer‐aided decision support systems are desired. A deep learning model is proposed in this paper to accurately identify cancer. Convolutional neural networks have shown great ability to identify the significant patterns for cancer classification. The proposed Parallel, Cross Concatenated and Grouped Convolutions Deep Neural Network (PC 2 GCDN 2 ) has been developed to obtain accurate patterns for classification. To prove the robustness of the model, it is evaluated on the KMC and TCGA‐LIHC liver dataset, LC25000 dataset for lung and colon cancer classification. The proposed PC 2 GCDN 2 model outperforms states‐of‐the‐art methods. The model provides 5.5% improved accuracy compared to the LiverNet proposed by Aatresh et. al on the KMC dataset. On the LC25000 dataset, 2% improvement is observed compared to existing models. Performance evaluation metrics like Sensitivity, Specificity, Recall, F1‐Score and Intersection‐Over‐Union are used to evaluate the performance. To the best of our knowledge, PC 2 GCDN 2 can be considered as gold standard for multiple histopathology image classification. PC 2 GCDN is able to classify the KMC and TCGA‐LIHC liver dataset with 96.4% and 98.6% accuracy, respectively, which are the best results obtained till now. The performance has been superior on LC25000 dataset with 99.5% and 100% classification accuracy on lung and colon dataset, by utilizing less than 0.5 million parameters." @default.
- W4313893521 created "2023-01-10" @default.
- W4313893521 creator A5040431047 @default.
- W4313893521 creator A5054217230 @default.
- W4313893521 creator A5065355815 @default.
- W4313893521 creator A5088940762 @default.
- W4313893521 date "2023-01-09" @default.
- W4313893521 modified "2023-10-05" @default.
- W4313893521 title "Histopathological carcinoma classification using parallel, cross‐concatenated and grouped convolutions deep neural network" @default.
- W4313893521 cites W1970161204 @default.
- W4313893521 cites W2302302587 @default.
- W4313893521 cites W2531409750 @default.
- W4313893521 cites W2805714323 @default.
- W4313893521 cites W2894084084 @default.
- W4313893521 cites W2915853139 @default.
- W4313893521 cites W2916845318 @default.
- W4313893521 cites W2962804068 @default.
- W4313893521 cites W2963446712 @default.
- W4313893521 cites W2964081807 @default.
- W4313893521 cites W3101353728 @default.
- W4313893521 cites W3114071918 @default.
- W4313893521 cites W3121831259 @default.
- W4313893521 cites W3128646645 @default.
- W4313893521 cites W3134849846 @default.
- W4313893521 cites W3137685921 @default.
- W4313893521 cites W3164525109 @default.
- W4313893521 cites W3165094978 @default.
- W4313893521 cites W3165720345 @default.
- W4313893521 cites W3181227444 @default.
- W4313893521 cites W3196327248 @default.
- W4313893521 cites W4213172312 @default.
- W4313893521 cites W4214561975 @default.
- W4313893521 cites W4245403358 @default.
- W4313893521 doi "https://doi.org/10.1002/ima.22846" @default.
- W4313893521 hasPublicationYear "2023" @default.
- W4313893521 type Work @default.
- W4313893521 citedByCount "2" @default.
- W4313893521 countsByYear W43138935212023 @default.
- W4313893521 crossrefType "journal-article" @default.
- W4313893521 hasAuthorship W4313893521A5040431047 @default.
- W4313893521 hasAuthorship W4313893521A5054217230 @default.
- W4313893521 hasAuthorship W4313893521A5065355815 @default.
- W4313893521 hasAuthorship W4313893521A5088940762 @default.
- W4313893521 hasConcept C104317684 @default.
- W4313893521 hasConcept C108583219 @default.
- W4313893521 hasConcept C115961682 @default.
- W4313893521 hasConcept C119857082 @default.
- W4313893521 hasConcept C121608353 @default.
- W4313893521 hasConcept C126322002 @default.
- W4313893521 hasConcept C153180895 @default.
- W4313893521 hasConcept C154945302 @default.
- W4313893521 hasConcept C2776231280 @default.
- W4313893521 hasConcept C41008148 @default.
- W4313893521 hasConcept C50644808 @default.
- W4313893521 hasConcept C55493867 @default.
- W4313893521 hasConcept C63479239 @default.
- W4313893521 hasConcept C71924100 @default.
- W4313893521 hasConcept C75294576 @default.
- W4313893521 hasConcept C81363708 @default.
- W4313893521 hasConcept C86803240 @default.
- W4313893521 hasConceptScore W4313893521C104317684 @default.
- W4313893521 hasConceptScore W4313893521C108583219 @default.
- W4313893521 hasConceptScore W4313893521C115961682 @default.
- W4313893521 hasConceptScore W4313893521C119857082 @default.
- W4313893521 hasConceptScore W4313893521C121608353 @default.
- W4313893521 hasConceptScore W4313893521C126322002 @default.
- W4313893521 hasConceptScore W4313893521C153180895 @default.
- W4313893521 hasConceptScore W4313893521C154945302 @default.
- W4313893521 hasConceptScore W4313893521C2776231280 @default.
- W4313893521 hasConceptScore W4313893521C41008148 @default.
- W4313893521 hasConceptScore W4313893521C50644808 @default.
- W4313893521 hasConceptScore W4313893521C55493867 @default.
- W4313893521 hasConceptScore W4313893521C63479239 @default.
- W4313893521 hasConceptScore W4313893521C71924100 @default.
- W4313893521 hasConceptScore W4313893521C75294576 @default.
- W4313893521 hasConceptScore W4313893521C81363708 @default.
- W4313893521 hasConceptScore W4313893521C86803240 @default.
- W4313893521 hasFunder F4320330412 @default.
- W4313893521 hasIssue "3" @default.
- W4313893521 hasLocation W43138935211 @default.
- W4313893521 hasOpenAccess W4313893521 @default.
- W4313893521 hasPrimaryLocation W43138935211 @default.
- W4313893521 hasRelatedWork W2470368200 @default.
- W4313893521 hasRelatedWork W2766604260 @default.
- W4313893521 hasRelatedWork W2912288872 @default.
- W4313893521 hasRelatedWork W2986507176 @default.
- W4313893521 hasRelatedWork W2996856019 @default.
- W4313893521 hasRelatedWork W3011074480 @default.
- W4313893521 hasRelatedWork W3018421652 @default.
- W4313893521 hasRelatedWork W3160224718 @default.
- W4313893521 hasRelatedWork W3160711233 @default.
- W4313893521 hasRelatedWork W4220996320 @default.
- W4313893521 hasVolume "33" @default.
- W4313893521 isParatext "false" @default.
- W4313893521 isRetracted "false" @default.
- W4313893521 workType "article" @default.