Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313894051> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313894051 endingPage "842" @default.
- W4313894051 startingPage "842" @default.
- W4313894051 abstract "Entity and relation extraction (ERE) is a core task in information extraction. This task has always faced the overlap problem. It was found that heterogeneous graph attention networks could enhance semantic analysis and fusion between entities and relations to improve the ERE performance in our previous work. In this paper, an entity and relation heterogeneous graph attention network (ERHGA) is proposed for joint ERE. A heterogeneous graph attention network with a gate mechanism was constructed containing word nodes, subject nodes, and relation nodes to learn and enhance the embedding of parts for relational triple extraction. The ERHGA was evaluated on the public relation extraction dataset named WebNLG. The experimental results demonstrate that the ERHGA, by taking subjects and relations as a priori information, can effectively handle the relational triple extraction problem and outperform all baselines to 93.3%, especially overlapping relational triples." @default.
- W4313894051 created "2023-01-10" @default.
- W4313894051 creator A5004392744 @default.
- W4313894051 creator A5030348721 @default.
- W4313894051 date "2023-01-07" @default.
- W4313894051 modified "2023-10-14" @default.
- W4313894051 title "Joint Extraction of Entities and Relations via Entity and Relation Heterogeneous Graph Attention Networks" @default.
- W4313894051 cites W2020278455 @default.
- W4313894051 cites W2251091211 @default.
- W4313894051 cites W2511964075 @default.
- W4313894051 cites W2798393196 @default.
- W4313894051 cites W2798734500 @default.
- W4313894051 cites W2799125718 @default.
- W4313894051 cites W2962939608 @default.
- W4313894051 cites W2964167098 @default.
- W4313894051 cites W2964349647 @default.
- W4313894051 cites W2964965220 @default.
- W4313894051 cites W2996825178 @default.
- W4313894051 cites W3001807478 @default.
- W4313894051 cites W3012244339 @default.
- W4313894051 cites W3034617555 @default.
- W4313894051 cites W3089929372 @default.
- W4313894051 cites W3116427155 @default.
- W4313894051 cites W3121835124 @default.
- W4313894051 cites W3129758539 @default.
- W4313894051 cites W3133932469 @default.
- W4313894051 cites W3159075545 @default.
- W4313894051 cites W3177474367 @default.
- W4313894051 cites W3178021032 @default.
- W4313894051 cites W3178328486 @default.
- W4313894051 cites W4200427693 @default.
- W4313894051 cites W4213056849 @default.
- W4313894051 cites W4220867505 @default.
- W4313894051 cites W4280545936 @default.
- W4313894051 cites W4283318382 @default.
- W4313894051 cites W4285138249 @default.
- W4313894051 doi "https://doi.org/10.3390/app13020842" @default.
- W4313894051 hasPublicationYear "2023" @default.
- W4313894051 type Work @default.
- W4313894051 citedByCount "1" @default.
- W4313894051 countsByYear W43138940512023 @default.
- W4313894051 crossrefType "journal-article" @default.
- W4313894051 hasAuthorship W4313894051A5004392744 @default.
- W4313894051 hasAuthorship W4313894051A5030348721 @default.
- W4313894051 hasBestOaLocation W43138940511 @default.
- W4313894051 hasConcept C111472728 @default.
- W4313894051 hasConcept C124101348 @default.
- W4313894051 hasConcept C127413603 @default.
- W4313894051 hasConcept C132525143 @default.
- W4313894051 hasConcept C138885662 @default.
- W4313894051 hasConcept C153604712 @default.
- W4313894051 hasConcept C154945302 @default.
- W4313894051 hasConcept C170154142 @default.
- W4313894051 hasConcept C18555067 @default.
- W4313894051 hasConcept C195807954 @default.
- W4313894051 hasConcept C25343380 @default.
- W4313894051 hasConcept C41008148 @default.
- W4313894051 hasConcept C41608201 @default.
- W4313894051 hasConcept C5655090 @default.
- W4313894051 hasConcept C75553542 @default.
- W4313894051 hasConcept C80444323 @default.
- W4313894051 hasConceptScore W4313894051C111472728 @default.
- W4313894051 hasConceptScore W4313894051C124101348 @default.
- W4313894051 hasConceptScore W4313894051C127413603 @default.
- W4313894051 hasConceptScore W4313894051C132525143 @default.
- W4313894051 hasConceptScore W4313894051C138885662 @default.
- W4313894051 hasConceptScore W4313894051C153604712 @default.
- W4313894051 hasConceptScore W4313894051C154945302 @default.
- W4313894051 hasConceptScore W4313894051C170154142 @default.
- W4313894051 hasConceptScore W4313894051C18555067 @default.
- W4313894051 hasConceptScore W4313894051C195807954 @default.
- W4313894051 hasConceptScore W4313894051C25343380 @default.
- W4313894051 hasConceptScore W4313894051C41008148 @default.
- W4313894051 hasConceptScore W4313894051C41608201 @default.
- W4313894051 hasConceptScore W4313894051C5655090 @default.
- W4313894051 hasConceptScore W4313894051C75553542 @default.
- W4313894051 hasConceptScore W4313894051C80444323 @default.
- W4313894051 hasFunder F4320321001 @default.
- W4313894051 hasIssue "2" @default.
- W4313894051 hasLocation W43138940511 @default.
- W4313894051 hasLocation W43138940512 @default.
- W4313894051 hasOpenAccess W4313894051 @default.
- W4313894051 hasPrimaryLocation W43138940511 @default.
- W4313894051 hasRelatedWork W102721276 @default.
- W4313894051 hasRelatedWork W2444550338 @default.
- W4313894051 hasRelatedWork W2609844752 @default.
- W4313894051 hasRelatedWork W2786559064 @default.
- W4313894051 hasRelatedWork W2787051473 @default.
- W4313894051 hasRelatedWork W2990941291 @default.
- W4313894051 hasRelatedWork W3138270804 @default.
- W4313894051 hasRelatedWork W4308971178 @default.
- W4313894051 hasRelatedWork W4319940250 @default.
- W4313894051 hasRelatedWork W2181701341 @default.
- W4313894051 hasVolume "13" @default.
- W4313894051 isParatext "false" @default.
- W4313894051 isRetracted "false" @default.
- W4313894051 workType "article" @default.