Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313894211> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4313894211 endingPage "631" @default.
- W4313894211 startingPage "631" @default.
- W4313894211 abstract "As an irreplaceable structural and functional material in strategic equipment, uranium and uranium alloys are generally susceptible to corrosion reactions during service, and predicting corrosion behavior has important research significance. There have been substantial studies conducted on metal corrosion research. Accelerated experiments can shorten the test time, but there are still differences in real corrosion processes. Numerical simulation methods can avoid radioactive experiments, but it is difficult to fully simulate a real corrosion environment. The modeling of real corrosion data using machine learning methods allows for effective corrosion prediction. This research used machine learning methods to study the corrosion of uranium and uranium alloys in air and established a corrosion weight gain prediction model. Eleven classic machine learning algorithms for regression were compared and a ten-fold cross validation method was used to choose the highest accuracy algorithm, which was the extra trees algorithm. Feature selection methods, including the extra trees and Pearson correlation analysis methods, were used to select the most important four factors in corrosion weight gain. As a result, the prediction accuracy of the corrosion weight gain prediction model was 96.8%, which could determine a good prediction of corrosion for uranium and uranium alloys." @default.
- W4313894211 created "2023-01-10" @default.
- W4313894211 creator A5005305428 @default.
- W4313894211 creator A5008245852 @default.
- W4313894211 creator A5058451144 @default.
- W4313894211 creator A5087794091 @default.
- W4313894211 date "2023-01-09" @default.
- W4313894211 modified "2023-09-26" @default.
- W4313894211 title "A Machine Learning Method for Predicting Corrosion Weight Gain of Uranium and Uranium Alloys" @default.
- W4313894211 cites W2047355935 @default.
- W4313894211 cites W2089054981 @default.
- W4313894211 cites W2111991878 @default.
- W4313894211 cites W2921873493 @default.
- W4313894211 cites W3007550778 @default.
- W4313894211 cites W3020990101 @default.
- W4313894211 cites W3026239817 @default.
- W4313894211 cites W3040330580 @default.
- W4313894211 cites W3043548898 @default.
- W4313894211 cites W3075723235 @default.
- W4313894211 cites W3106020195 @default.
- W4313894211 cites W3153092628 @default.
- W4313894211 cites W3185347302 @default.
- W4313894211 cites W4205699531 @default.
- W4313894211 cites W4210558868 @default.
- W4313894211 cites W4285403447 @default.
- W4313894211 cites W4295592723 @default.
- W4313894211 doi "https://doi.org/10.3390/ma16020631" @default.
- W4313894211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36676368" @default.
- W4313894211 hasPublicationYear "2023" @default.
- W4313894211 type Work @default.
- W4313894211 citedByCount "1" @default.
- W4313894211 countsByYear W43138942112023 @default.
- W4313894211 crossrefType "journal-article" @default.
- W4313894211 hasAuthorship W4313894211A5005305428 @default.
- W4313894211 hasAuthorship W4313894211A5008245852 @default.
- W4313894211 hasAuthorship W4313894211A5058451144 @default.
- W4313894211 hasAuthorship W4313894211A5087794091 @default.
- W4313894211 hasBestOaLocation W43138942111 @default.
- W4313894211 hasConcept C154945302 @default.
- W4313894211 hasConcept C191897082 @default.
- W4313894211 hasConcept C192562407 @default.
- W4313894211 hasConcept C20625102 @default.
- W4313894211 hasConcept C41008148 @default.
- W4313894211 hasConcept C555451288 @default.
- W4313894211 hasConceptScore W4313894211C154945302 @default.
- W4313894211 hasConceptScore W4313894211C191897082 @default.
- W4313894211 hasConceptScore W4313894211C192562407 @default.
- W4313894211 hasConceptScore W4313894211C20625102 @default.
- W4313894211 hasConceptScore W4313894211C41008148 @default.
- W4313894211 hasConceptScore W4313894211C555451288 @default.
- W4313894211 hasFunder F4320335777 @default.
- W4313894211 hasIssue "2" @default.
- W4313894211 hasLocation W43138942111 @default.
- W4313894211 hasLocation W43138942112 @default.
- W4313894211 hasLocation W43138942113 @default.
- W4313894211 hasOpenAccess W4313894211 @default.
- W4313894211 hasPrimaryLocation W43138942111 @default.
- W4313894211 hasRelatedWork W2068311004 @default.
- W4313894211 hasRelatedWork W2342244223 @default.
- W4313894211 hasRelatedWork W2610509641 @default.
- W4313894211 hasRelatedWork W2791262690 @default.
- W4313894211 hasRelatedWork W2899084033 @default.
- W4313894211 hasRelatedWork W2901275874 @default.
- W4313894211 hasRelatedWork W3097783663 @default.
- W4313894211 hasRelatedWork W3135117324 @default.
- W4313894211 hasRelatedWork W4366262926 @default.
- W4313894211 hasRelatedWork W4379014514 @default.
- W4313894211 hasVolume "16" @default.
- W4313894211 isParatext "false" @default.
- W4313894211 isRetracted "false" @default.
- W4313894211 workType "article" @default.