Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313894490> ?p ?o ?g. }
- W4313894490 endingPage "752" @default.
- W4313894490 startingPage "752" @default.
- W4313894490 abstract "The game of Jenga is a benchmark used for developing innovative manipulation solutions for complex tasks. Indeed, it encourages the study of novel robotics methods to successfully extract blocks from a tower. A Jenga game involves many traits of complex industrial and surgical manipulation tasks, requiring a multi-step strategy, the combination of visual and tactile data, and the highly precise motion of a robotic arm to perform a single block extraction. In this work, we propose a novel, cost-effective architecture for playing Jenga with e.Do, a 6DOF anthropomorphic manipulator manufactured by Comau, a standard depth camera, and an inexpensive monodirectional force sensor. Our solution focuses on a visual-based control strategy to accurately align the end-effector with the desired block, enabling block extraction by pushing. To this aim, we trained an instance segmentation deep learning model on a synthetic custom dataset to segment each piece of the Jenga tower, allowing for visual tracking of the desired block's pose during the motion of the manipulator. We integrated the visual-based strategy with a 1D force sensor to detect whether the block could be safely removed by identifying a force threshold value. Our experimentation shows that our low-cost solution allows e.DO to precisely reach removable blocks and perform up to 14 consecutive extractions in a row." @default.
- W4313894490 created "2023-01-10" @default.
- W4313894490 creator A5008314674 @default.
- W4313894490 creator A5009477620 @default.
- W4313894490 creator A5041311494 @default.
- W4313894490 creator A5042240337 @default.
- W4313894490 creator A5082616706 @default.
- W4313894490 creator A5083385118 @default.
- W4313894490 date "2023-01-09" @default.
- W4313894490 modified "2023-10-14" @default.
- W4313894490 title "Deep Instance Segmentation and Visual Servoing to Play Jenga with a Cost-Effective Robotic System" @default.
- W4313894490 cites W1901129140 @default.
- W4313894490 cites W1903029394 @default.
- W4313894490 cites W1925668245 @default.
- W4313894490 cites W1964339024 @default.
- W4313894490 cites W1972373926 @default.
- W4313894490 cites W1983898566 @default.
- W4313894490 cites W2055185364 @default.
- W4313894490 cites W2098701449 @default.
- W4313894490 cites W2105085370 @default.
- W4313894490 cites W2108598000 @default.
- W4313894490 cites W2121042348 @default.
- W4313894490 cites W2145497350 @default.
- W4313894490 cites W2162068736 @default.
- W4313894490 cites W2166374794 @default.
- W4313894490 cites W2167501464 @default.
- W4313894490 cites W2194775991 @default.
- W4313894490 cites W2263275936 @default.
- W4313894490 cites W2305749651 @default.
- W4313894490 cites W2313767655 @default.
- W4313894490 cites W2555182955 @default.
- W4313894490 cites W2558156561 @default.
- W4313894490 cites W2565639579 @default.
- W4313894490 cites W2570343428 @default.
- W4313894490 cites W2618530766 @default.
- W4313894490 cites W2752782242 @default.
- W4313894490 cites W2809446072 @default.
- W4313894490 cites W2884367402 @default.
- W4313894490 cites W2884585870 @default.
- W4313894490 cites W2888085144 @default.
- W4313894490 cites W2902907165 @default.
- W4313894490 cites W2909919961 @default.
- W4313894490 cites W2912997088 @default.
- W4313894490 cites W2915637444 @default.
- W4313894490 cites W2919115771 @default.
- W4313894490 cites W2940375853 @default.
- W4313894490 cites W2962991582 @default.
- W4313894490 cites W2963037989 @default.
- W4313894490 cites W2963150697 @default.
- W4313894490 cites W2963455537 @default.
- W4313894490 cites W2964236837 @default.
- W4313894490 cites W2966329842 @default.
- W4313894490 cites W2979630916 @default.
- W4313894490 cites W2981919877 @default.
- W4313894490 cites W3000697615 @default.
- W4313894490 cites W3016969588 @default.
- W4313894490 cites W3047032303 @default.
- W4313894490 cites W3059965140 @default.
- W4313894490 cites W3106250896 @default.
- W4313894490 cites W3133882515 @default.
- W4313894490 cites W3155085480 @default.
- W4313894490 cites W3183165162 @default.
- W4313894490 cites W3204399832 @default.
- W4313894490 cites W4200635690 @default.
- W4313894490 cites W4240172577 @default.
- W4313894490 cites W4283723153 @default.
- W4313894490 doi "https://doi.org/10.3390/s23020752" @default.
- W4313894490 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679543" @default.
- W4313894490 hasPublicationYear "2023" @default.
- W4313894490 type Work @default.
- W4313894490 citedByCount "0" @default.
- W4313894490 crossrefType "journal-article" @default.
- W4313894490 hasAuthorship W4313894490A5008314674 @default.
- W4313894490 hasAuthorship W4313894490A5009477620 @default.
- W4313894490 hasAuthorship W4313894490A5041311494 @default.
- W4313894490 hasAuthorship W4313894490A5042240337 @default.
- W4313894490 hasAuthorship W4313894490A5082616706 @default.
- W4313894490 hasAuthorship W4313894490A5083385118 @default.
- W4313894490 hasBestOaLocation W43138944901 @default.
- W4313894490 hasConcept C10912380 @default.
- W4313894490 hasConcept C13280743 @default.
- W4313894490 hasConcept C154945302 @default.
- W4313894490 hasConcept C185798385 @default.
- W4313894490 hasConcept C205649164 @default.
- W4313894490 hasConcept C2524010 @default.
- W4313894490 hasConcept C2777210771 @default.
- W4313894490 hasConcept C31972630 @default.
- W4313894490 hasConcept C33923547 @default.
- W4313894490 hasConcept C34413123 @default.
- W4313894490 hasConcept C41008148 @default.
- W4313894490 hasConcept C89600930 @default.
- W4313894490 hasConcept C90509273 @default.
- W4313894490 hasConceptScore W4313894490C10912380 @default.
- W4313894490 hasConceptScore W4313894490C13280743 @default.
- W4313894490 hasConceptScore W4313894490C154945302 @default.
- W4313894490 hasConceptScore W4313894490C185798385 @default.
- W4313894490 hasConceptScore W4313894490C205649164 @default.
- W4313894490 hasConceptScore W4313894490C2524010 @default.