Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313894502> ?p ?o ?g. }
- W4313894502 endingPage "657" @default.
- W4313894502 startingPage "657" @default.
- W4313894502 abstract "A hyperspectral image (HSI), which contains a number of contiguous and narrow spectral wavelength bands, is a valuable source of data for ground cover examinations. Classification using the entire original HSI suffers from the curse of dimensionality problem because (i) the image bands are highly correlated both spectrally and spatially, (ii) not every band can carry equal information, (iii) there is a lack of enough training samples for some classes, and (iv) the overall computational cost is high. Therefore, effective feature (band) reduction is necessary through feature extraction (FE) and/or feature selection (FS) for improving the classification in a cost-effective manner. Principal component analysis (PCA) is a frequently adopted unsupervised FE method in HSI classification. Nevertheless, its performance worsens when the dataset is noisy, and the computational cost becomes high. Consequently, this study first proposed an efficient FE approach using a normalized mutual information (NMI)-based band grouping strategy, where the classical PCA was applied to each band subgroup for intrinsic FE. Finally, the subspace of the most effective features was generated by the NMI-based minimum redundancy and maximum relevance (mRMR) FS criteria. The subspace of features was then classified using the kernel support vector machine. Two real HSIs collected by the AVIRIS and HYDICE sensors were used in an experiment. The experimental results demonstrated that the proposed feature reduction approach significantly improved the classification performance. It achieved the highest overall classification accuracy of 94.93% for the AVIRIS dataset and 99.026% for the HYDICE dataset. Moreover, the proposed approach reduced the computational cost compared with the studied methods." @default.
- W4313894502 created "2023-01-10" @default.
- W4313894502 creator A5000628690 @default.
- W4313894502 creator A5032219102 @default.
- W4313894502 creator A5043273488 @default.
- W4313894502 creator A5054095804 @default.
- W4313894502 date "2023-01-06" @default.
- W4313894502 modified "2023-10-12" @default.
- W4313894502 title "Mutual Information-Driven Feature Reduction for Hyperspectral Image Classification" @default.
- W4313894502 cites W1964325474 @default.
- W4313894502 cites W1976381494 @default.
- W4313894502 cites W2064987453 @default.
- W4313894502 cites W2073190199 @default.
- W4313894502 cites W2098057602 @default.
- W4313894502 cites W2144188273 @default.
- W4313894502 cites W2153635508 @default.
- W4313894502 cites W2155131749 @default.
- W4313894502 cites W2156932943 @default.
- W4313894502 cites W2162480849 @default.
- W4313894502 cites W2164437025 @default.
- W4313894502 cites W2178289558 @default.
- W4313894502 cites W2540897223 @default.
- W4313894502 cites W2765408785 @default.
- W4313894502 cites W2774091922 @default.
- W4313894502 cites W2780035707 @default.
- W4313894502 cites W2785614354 @default.
- W4313894502 cites W2787506852 @default.
- W4313894502 cites W2793218933 @default.
- W4313894502 cites W2886493050 @default.
- W4313894502 cites W2891646791 @default.
- W4313894502 cites W2935967304 @default.
- W4313894502 cites W2939526493 @default.
- W4313894502 cites W3103615857 @default.
- W4313894502 cites W3114923132 @default.
- W4313894502 cites W3203586352 @default.
- W4313894502 cites W4212991997 @default.
- W4313894502 cites W4214895820 @default.
- W4313894502 cites W4224310630 @default.
- W4313894502 cites W4281256697 @default.
- W4313894502 cites W4289529177 @default.
- W4313894502 cites W4292974999 @default.
- W4313894502 cites W4303981212 @default.
- W4313894502 cites W4308719658 @default.
- W4313894502 doi "https://doi.org/10.3390/s23020657" @default.
- W4313894502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679453" @default.
- W4313894502 hasPublicationYear "2023" @default.
- W4313894502 type Work @default.
- W4313894502 citedByCount "5" @default.
- W4313894502 countsByYear W43138945022023 @default.
- W4313894502 crossrefType "journal-article" @default.
- W4313894502 hasAuthorship W4313894502A5000628690 @default.
- W4313894502 hasAuthorship W4313894502A5032219102 @default.
- W4313894502 hasAuthorship W4313894502A5043273488 @default.
- W4313894502 hasAuthorship W4313894502A5054095804 @default.
- W4313894502 hasBestOaLocation W43138945021 @default.
- W4313894502 hasConcept C111030470 @default.
- W4313894502 hasConcept C111919701 @default.
- W4313894502 hasConcept C114614502 @default.
- W4313894502 hasConcept C114700698 @default.
- W4313894502 hasConcept C12267149 @default.
- W4313894502 hasConcept C127313418 @default.
- W4313894502 hasConcept C138885662 @default.
- W4313894502 hasConcept C148483581 @default.
- W4313894502 hasConcept C152124472 @default.
- W4313894502 hasConcept C152139883 @default.
- W4313894502 hasConcept C153180895 @default.
- W4313894502 hasConcept C154945302 @default.
- W4313894502 hasConcept C159078339 @default.
- W4313894502 hasConcept C27438332 @default.
- W4313894502 hasConcept C2776401178 @default.
- W4313894502 hasConcept C32834561 @default.
- W4313894502 hasConcept C33923547 @default.
- W4313894502 hasConcept C41008148 @default.
- W4313894502 hasConcept C41895202 @default.
- W4313894502 hasConcept C52622490 @default.
- W4313894502 hasConcept C62649853 @default.
- W4313894502 hasConcept C70518039 @default.
- W4313894502 hasConcept C74193536 @default.
- W4313894502 hasConceptScore W4313894502C111030470 @default.
- W4313894502 hasConceptScore W4313894502C111919701 @default.
- W4313894502 hasConceptScore W4313894502C114614502 @default.
- W4313894502 hasConceptScore W4313894502C114700698 @default.
- W4313894502 hasConceptScore W4313894502C12267149 @default.
- W4313894502 hasConceptScore W4313894502C127313418 @default.
- W4313894502 hasConceptScore W4313894502C138885662 @default.
- W4313894502 hasConceptScore W4313894502C148483581 @default.
- W4313894502 hasConceptScore W4313894502C152124472 @default.
- W4313894502 hasConceptScore W4313894502C152139883 @default.
- W4313894502 hasConceptScore W4313894502C153180895 @default.
- W4313894502 hasConceptScore W4313894502C154945302 @default.
- W4313894502 hasConceptScore W4313894502C159078339 @default.
- W4313894502 hasConceptScore W4313894502C27438332 @default.
- W4313894502 hasConceptScore W4313894502C2776401178 @default.
- W4313894502 hasConceptScore W4313894502C32834561 @default.
- W4313894502 hasConceptScore W4313894502C33923547 @default.
- W4313894502 hasConceptScore W4313894502C41008148 @default.
- W4313894502 hasConceptScore W4313894502C41895202 @default.
- W4313894502 hasConceptScore W4313894502C52622490 @default.