Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313897548> ?p ?o ?g. }
- W4313897548 endingPage "106608" @default.
- W4313897548 startingPage "106608" @default.
- W4313897548 abstract "In this paper we have tackled the problem of long-term air temperature prediction with eXplainable Artificial Intelligence (XAI) models. Specifically, we have evaluated the performance of an Artificial Neural Network (ANN) architecture with sigmoidal neurons in the hidden layer, trained by means of an evolutionary algorithm (Evolutionary ANNs, EANNs). This XAI model architecture (XAI-EANN) has been applied to the long-term air temperature prediction at different sub-regions of the South of the Iberian Peninsula. In this case, the average August air temperature has been predicted from ERA5 Reanalysis data variables, obtaining good predictions skills and explainable models in terms of the input climatological variables considered. A cluster analysis has been first carried out in terms of the average air temperature in the zone, in such a way that a number of sub-regions with different air temperature behaviour have been defined. The proposed XAI-EANN model architecture has been applied to each of the defined sub-regions, in order to find significant differences among them, which can be explained with the XAI-EANN models obtained. Finally, a comprehensive comparison against some state-of-the-art techniques has also been carried out, concluding that there are statistically significant differences in terms of accuracy in favour of the proposed XAI-EANN model, which also benefits from being an XAI model." @default.
- W4313897548 created "2023-01-10" @default.
- W4313897548 creator A5022605799 @default.
- W4313897548 creator A5039083315 @default.
- W4313897548 creator A5060780612 @default.
- W4313897548 creator A5063964437 @default.
- W4313897548 creator A5073509546 @default.
- W4313897548 creator A5086980043 @default.
- W4313897548 date "2023-03-01" @default.
- W4313897548 modified "2023-10-18" @default.
- W4313897548 title "One month in advance prediction of air temperature from Reanalysis data with eXplainable Artificial Intelligence techniques" @default.
- W4313897548 cites W175635315 @default.
- W4313897548 cites W1972252141 @default.
- W4313897548 cites W1977577267 @default.
- W4313897548 cites W1977905297 @default.
- W4313897548 cites W1979500632 @default.
- W4313897548 cites W1984310463 @default.
- W4313897548 cites W1986007412 @default.
- W4313897548 cites W1994319753 @default.
- W4313897548 cites W2004075725 @default.
- W4313897548 cites W2007239252 @default.
- W4313897548 cites W2013766566 @default.
- W4313897548 cites W2017129658 @default.
- W4313897548 cites W2027139535 @default.
- W4313897548 cites W2032193905 @default.
- W4313897548 cites W2033085992 @default.
- W4313897548 cites W2042336720 @default.
- W4313897548 cites W2054459031 @default.
- W4313897548 cites W2061666370 @default.
- W4313897548 cites W2065227926 @default.
- W4313897548 cites W2065363804 @default.
- W4313897548 cites W2085232632 @default.
- W4313897548 cites W2122825543 @default.
- W4313897548 cites W2124290836 @default.
- W4313897548 cites W2149320615 @default.
- W4313897548 cites W2179078469 @default.
- W4313897548 cites W2318802957 @default.
- W4313897548 cites W2619019407 @default.
- W4313897548 cites W2727825517 @default.
- W4313897548 cites W2733722625 @default.
- W4313897548 cites W2807953323 @default.
- W4313897548 cites W2911831784 @default.
- W4313897548 cites W2911964244 @default.
- W4313897548 cites W2943528199 @default.
- W4313897548 cites W2967988901 @default.
- W4313897548 cites W2981731882 @default.
- W4313897548 cites W2995378905 @default.
- W4313897548 cites W2997428643 @default.
- W4313897548 cites W3000384276 @default.
- W4313897548 cites W3000500483 @default.
- W4313897548 cites W3025949386 @default.
- W4313897548 cites W3047222331 @default.
- W4313897548 cites W3049184217 @default.
- W4313897548 cites W3087741866 @default.
- W4313897548 cites W3111322109 @default.
- W4313897548 cites W3160924831 @default.
- W4313897548 cites W3175815213 @default.
- W4313897548 cites W3195433497 @default.
- W4313897548 cites W3205389354 @default.
- W4313897548 cites W4200018610 @default.
- W4313897548 cites W4213319146 @default.
- W4313897548 cites W4214718096 @default.
- W4313897548 cites W4220952819 @default.
- W4313897548 cites W4255375128 @default.
- W4313897548 cites W4291595042 @default.
- W4313897548 doi "https://doi.org/10.1016/j.atmosres.2023.106608" @default.
- W4313897548 hasPublicationYear "2023" @default.
- W4313897548 type Work @default.
- W4313897548 citedByCount "1" @default.
- W4313897548 countsByYear W43138975482023 @default.
- W4313897548 crossrefType "journal-article" @default.
- W4313897548 hasAuthorship W4313897548A5022605799 @default.
- W4313897548 hasAuthorship W4313897548A5039083315 @default.
- W4313897548 hasAuthorship W4313897548A5060780612 @default.
- W4313897548 hasAuthorship W4313897548A5063964437 @default.
- W4313897548 hasAuthorship W4313897548A5073509546 @default.
- W4313897548 hasAuthorship W4313897548A5086980043 @default.
- W4313897548 hasBestOaLocation W43138975481 @default.
- W4313897548 hasConcept C121332964 @default.
- W4313897548 hasConcept C124101348 @default.
- W4313897548 hasConcept C153294291 @default.
- W4313897548 hasConcept C154945302 @default.
- W4313897548 hasConcept C164866538 @default.
- W4313897548 hasConcept C199360897 @default.
- W4313897548 hasConcept C205649164 @default.
- W4313897548 hasConcept C2983363897 @default.
- W4313897548 hasConcept C41008148 @default.
- W4313897548 hasConcept C50644808 @default.
- W4313897548 hasConcept C61797465 @default.
- W4313897548 hasConcept C62520636 @default.
- W4313897548 hasConceptScore W4313897548C121332964 @default.
- W4313897548 hasConceptScore W4313897548C124101348 @default.
- W4313897548 hasConceptScore W4313897548C153294291 @default.
- W4313897548 hasConceptScore W4313897548C154945302 @default.
- W4313897548 hasConceptScore W4313897548C164866538 @default.
- W4313897548 hasConceptScore W4313897548C199360897 @default.
- W4313897548 hasConceptScore W4313897548C205649164 @default.
- W4313897548 hasConceptScore W4313897548C2983363897 @default.