Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313897795> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4313897795 endingPage "170" @default.
- W4313897795 startingPage "170" @default.
- W4313897795 abstract "Rice diseases are extremely harmful to rice growth, and achieving the identification and rapid classification of rice disease spots is an essential means to promote intelligent rice production. However, due to the large variety of rice diseases and the similar appearance of some rice diseases, the existing deep learning methods are less effective at classification and detection. Aiming at such problems, this paper took the spot images of five common rice diseases as the research object and constructed a rice disease data set containing 2500 images of rice bacterial blight, sheath blight, flax leaf spot, leaf streak and rice blast, including 500 images of each disease. An improved lightweight deep learning network model was proposed to realize the accurate identification of disease types and disease spots. A rice disease image classification network was designed based on the RlpNet (rice leaf plaque net) network model, Which is the underlying network, in addition to the YOLOv3 target detection network model in order to achieve the optimization of the feature extraction link, i.e., upsampling by transposed convolution and downsampling by dilated convolution. The improved YOLOv3 model was compared with traditional convolutional neural network models, including the AlexNet, GoogLeNet, VGG-16 and ResNet-34 models, for disease recognition, and the results showed that the average recall, average precision, average F1-score and overall accuracy of the network model for rice disease classification were 91.84%, 92.14%, 91.87% and 91.84%, respectively, which were all improved compared with the traditional algorithms. The improved YOLOv3 network model was compared with FSSD, Faster-RCNN, YOLOv3 and YOLOv4 for spot detection studies, and the results showed that it could achieve a mean average precision (mAP) of 86.72%, a detection rate (DR) of 93.92%, a frames per second (FPS) rate of 63.4 and a false alarm rate (FAR) of only 5.12%. In summary, the comprehensive performance of the proposed model was better than that of the traditional YOLOv3 algorithm, so this study provides a new method for rice disease identification and disease spot detection. It also had good performance in terms of the common detection and classification of multiple rice diseases, which provides some support for the common differentiation of multiple rice diseases and has some practical application value." @default.
- W4313897795 created "2023-01-10" @default.
- W4313897795 creator A5034655318 @default.
- W4313897795 creator A5038389392 @default.
- W4313897795 date "2023-01-09" @default.
- W4313897795 modified "2023-10-05" @default.
- W4313897795 title "Rice Plaque Detection and Identification Based on an Improved Convolutional Neural Network" @default.
- W4313897795 cites W2097117768 @default.
- W4313897795 cites W2914622272 @default.
- W4313897795 cites W2946016983 @default.
- W4313897795 cites W3003067960 @default.
- W4313897795 cites W3067356005 @default.
- W4313897795 cites W3082831672 @default.
- W4313897795 cites W3112401911 @default.
- W4313897795 cites W3147527926 @default.
- W4313897795 cites W3195791401 @default.
- W4313897795 cites W3196811283 @default.
- W4313897795 cites W3197660163 @default.
- W4313897795 cites W3198305091 @default.
- W4313897795 cites W3199519072 @default.
- W4313897795 cites W3199742166 @default.
- W4313897795 cites W3199890259 @default.
- W4313897795 cites W3200228418 @default.
- W4313897795 cites W3200898326 @default.
- W4313897795 cites W3201083518 @default.
- W4313897795 cites W3201174862 @default.
- W4313897795 cites W3202354933 @default.
- W4313897795 cites W3203795137 @default.
- W4313897795 cites W4226157171 @default.
- W4313897795 cites W4281492951 @default.
- W4313897795 cites W4308823880 @default.
- W4313897795 doi "https://doi.org/10.3390/agriculture13010170" @default.
- W4313897795 hasPublicationYear "2023" @default.
- W4313897795 type Work @default.
- W4313897795 citedByCount "1" @default.
- W4313897795 countsByYear W43138977952023 @default.
- W4313897795 crossrefType "journal-article" @default.
- W4313897795 hasAuthorship W4313897795A5034655318 @default.
- W4313897795 hasAuthorship W4313897795A5038389392 @default.
- W4313897795 hasBestOaLocation W43138977951 @default.
- W4313897795 hasConcept C108583219 @default.
- W4313897795 hasConcept C153180895 @default.
- W4313897795 hasConcept C154945302 @default.
- W4313897795 hasConcept C2780034373 @default.
- W4313897795 hasConcept C2992726227 @default.
- W4313897795 hasConcept C41008148 @default.
- W4313897795 hasConcept C52622490 @default.
- W4313897795 hasConcept C6557445 @default.
- W4313897795 hasConcept C81363708 @default.
- W4313897795 hasConcept C86803240 @default.
- W4313897795 hasConceptScore W4313897795C108583219 @default.
- W4313897795 hasConceptScore W4313897795C153180895 @default.
- W4313897795 hasConceptScore W4313897795C154945302 @default.
- W4313897795 hasConceptScore W4313897795C2780034373 @default.
- W4313897795 hasConceptScore W4313897795C2992726227 @default.
- W4313897795 hasConceptScore W4313897795C41008148 @default.
- W4313897795 hasConceptScore W4313897795C52622490 @default.
- W4313897795 hasConceptScore W4313897795C6557445 @default.
- W4313897795 hasConceptScore W4313897795C81363708 @default.
- W4313897795 hasConceptScore W4313897795C86803240 @default.
- W4313897795 hasIssue "1" @default.
- W4313897795 hasLocation W43138977951 @default.
- W4313897795 hasOpenAccess W4313897795 @default.
- W4313897795 hasPrimaryLocation W43138977951 @default.
- W4313897795 hasRelatedWork W2279398222 @default.
- W4313897795 hasRelatedWork W2731899572 @default.
- W4313897795 hasRelatedWork W3116150086 @default.
- W4313897795 hasRelatedWork W3133861977 @default.
- W4313897795 hasRelatedWork W3156786002 @default.
- W4313897795 hasRelatedWork W4200173597 @default.
- W4313897795 hasRelatedWork W4299822940 @default.
- W4313897795 hasRelatedWork W4312417841 @default.
- W4313897795 hasRelatedWork W4321369474 @default.
- W4313897795 hasRelatedWork W4366492315 @default.
- W4313897795 hasVolume "13" @default.
- W4313897795 isParatext "false" @default.
- W4313897795 isRetracted "false" @default.
- W4313897795 workType "article" @default.