Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313897968> ?p ?o ?g. }
- W4313897968 endingPage "787" @default.
- W4313897968 startingPage "774" @default.
- W4313897968 abstract "Biomass is the most widespread among renewable energy sources and offers many advantages. However, the heterogeneous structure of biomass brings many disadvantages. Therefore, characterization of thermal degradation of biopolymeric structures in biomass such as hemicellulose (HC), cellulose (CL), and lignin (LN) is very important for the efficiency of any biomass-based thermal process. On the other hand, the characterization of these biopolymers requires various experimental procedures that consume resources and time. Artificial neural networks (ANN) as a machine learning approach provide a remarkable opportunity to identify patterns in the complex structure of biomass fuels and their thermochemical degradation processes. In this study, a new model was developed for the first time to generate differential thermogravimetric analysis (DTG) curves for HC, CL and LN in biomass using proximate analysis results of raw biomass. DTG curves were evaluated using a ANN model developed with the open-source “TensorFlow” library in Python software. ANN model performed excellently with R2 values above 0.998. The results show that the newly developed model can estimate the thermal degradation for any temperature, so that biopolymer fractions in the degraded biomass can be calculated immediately, which has not been reported before." @default.
- W4313897968 created "2023-01-10" @default.
- W4313897968 creator A5044661006 @default.
- W4313897968 creator A5054073794 @default.
- W4313897968 creator A5065481059 @default.
- W4313897968 date "2023-03-01" @default.
- W4313897968 modified "2023-09-27" @default.
- W4313897968 title "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning" @default.
- W4313897968 cites W1970086833 @default.
- W4313897968 cites W1970547290 @default.
- W4313897968 cites W1971806171 @default.
- W4313897968 cites W1973798361 @default.
- W4313897968 cites W1979907258 @default.
- W4313897968 cites W1983277035 @default.
- W4313897968 cites W1985918195 @default.
- W4313897968 cites W1993195426 @default.
- W4313897968 cites W2000805715 @default.
- W4313897968 cites W2008239616 @default.
- W4313897968 cites W2011761532 @default.
- W4313897968 cites W2012224408 @default.
- W4313897968 cites W2024394347 @default.
- W4313897968 cites W2024449667 @default.
- W4313897968 cites W2024563616 @default.
- W4313897968 cites W2037179587 @default.
- W4313897968 cites W2039860506 @default.
- W4313897968 cites W2040359359 @default.
- W4313897968 cites W2053685838 @default.
- W4313897968 cites W2057645529 @default.
- W4313897968 cites W2061027546 @default.
- W4313897968 cites W2076981960 @default.
- W4313897968 cites W2087853826 @default.
- W4313897968 cites W2090968132 @default.
- W4313897968 cites W2094224440 @default.
- W4313897968 cites W2105352289 @default.
- W4313897968 cites W2133684787 @default.
- W4313897968 cites W2142837264 @default.
- W4313897968 cites W2166285603 @default.
- W4313897968 cites W2168128200 @default.
- W4313897968 cites W2260513855 @default.
- W4313897968 cites W2315970277 @default.
- W4313897968 cites W2559478395 @default.
- W4313897968 cites W2612456888 @default.
- W4313897968 cites W2618530766 @default.
- W4313897968 cites W2623923654 @default.
- W4313897968 cites W2762919131 @default.
- W4313897968 cites W2898670767 @default.
- W4313897968 cites W2942231644 @default.
- W4313897968 cites W2945107553 @default.
- W4313897968 cites W2973127574 @default.
- W4313897968 cites W2982081811 @default.
- W4313897968 cites W2983106175 @default.
- W4313897968 cites W3114133553 @default.
- W4313897968 cites W3124622085 @default.
- W4313897968 cites W3136033096 @default.
- W4313897968 cites W3158019739 @default.
- W4313897968 cites W3182218116 @default.
- W4313897968 cites W3184245433 @default.
- W4313897968 cites W3188915507 @default.
- W4313897968 cites W4224079904 @default.
- W4313897968 doi "https://doi.org/10.1016/j.renene.2023.01.017" @default.
- W4313897968 hasPublicationYear "2023" @default.
- W4313897968 type Work @default.
- W4313897968 citedByCount "1" @default.
- W4313897968 countsByYear W43138979682023 @default.
- W4313897968 crossrefType "journal-article" @default.
- W4313897968 hasAuthorship W4313897968A5044661006 @default.
- W4313897968 hasAuthorship W4313897968A5054073794 @default.
- W4313897968 hasAuthorship W4313897968A5065481059 @default.
- W4313897968 hasConcept C111368507 @default.
- W4313897968 hasConcept C115540264 @default.
- W4313897968 hasConcept C119599485 @default.
- W4313897968 hasConcept C127313418 @default.
- W4313897968 hasConcept C127413603 @default.
- W4313897968 hasConcept C178790620 @default.
- W4313897968 hasConcept C185592680 @default.
- W4313897968 hasConcept C188573790 @default.
- W4313897968 hasConcept C206139338 @default.
- W4313897968 hasConcept C21880701 @default.
- W4313897968 hasConcept C2776073808 @default.
- W4313897968 hasConcept C2778636629 @default.
- W4313897968 hasConcept C2779251873 @default.
- W4313897968 hasConcept C2779679103 @default.
- W4313897968 hasConcept C2781052789 @default.
- W4313897968 hasConcept C36759035 @default.
- W4313897968 hasConcept C39432304 @default.
- W4313897968 hasConcept C41008148 @default.
- W4313897968 hasConcept C42360764 @default.
- W4313897968 hasConcept C521977710 @default.
- W4313897968 hasConcept C528095902 @default.
- W4313897968 hasConcept C548081761 @default.
- W4313897968 hasConcept C60100273 @default.
- W4313897968 hasConcept C76155785 @default.
- W4313897968 hasConceptScore W4313897968C111368507 @default.
- W4313897968 hasConceptScore W4313897968C115540264 @default.
- W4313897968 hasConceptScore W4313897968C119599485 @default.
- W4313897968 hasConceptScore W4313897968C127313418 @default.
- W4313897968 hasConceptScore W4313897968C127413603 @default.
- W4313897968 hasConceptScore W4313897968C178790620 @default.