Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313897974> ?p ?o ?g. }
- W4313897974 endingPage "1618" @default.
- W4313897974 startingPage "1605" @default.
- W4313897974 abstract "Internal tumor motion is commonly predicted using external respiratory signals. However, the internal/external correlation is complex and patient-specific. The purpose of this study was to develop various models based on the radiomic features of computed tomography (CT) images to predict the accuracy of tumor motion tracking using external surrogates and to find accurate and reliable tracking algorithms.Images obtained from a total of 108 and 71 patients pathologically diagnosed with lung and liver cancers, respectively, were examined. Real-time position monitoring motion was fitted to tumor motion, and samples with fitting errors greater than 2 mm were considered positive. Radiomic features were extracted from internal target volumes of average intensity projections, and cross-validation least absolute shrinkage and selection operator (LassoCV) was used to conduct feature selection. Based on the radiomic features, a total of 26 separate models (13 for the lung and 13 for the liver) were trained and tested. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to assess performance. Relative standard deviation was used to assess stability.Thirty-three and 22 radiomic features were selected for the lung and liver, respectively. For the lung, the AUC varied from 0.848 (decision tree) to 0.941 [support vector classifier (SVC), logistic regression]; sensitivity varied from 0.723 (extreme gradient boosting) to 0.848 [linear support vector classifier (linearSVC)]; specificity varied from 0.834 (gaussian naive bayes) to 0.936 [multilayer perceptron (MLP), wide and deep (W&D)]; and MLP and W&D had better performance and stability than the median. For the liver, the AUC varied from 0.677 [light gradient boosting machine (Light)] to 0.892 (logistic regression); sensitivity varied from 0.717 (W&D) to 0.862 (MLP); specificity varied from 0.566 (Light) to 0.829 (linearSVC); and logistic regression, MLP, and SVC had better performance and stability than the median.Respiratory-sensitive radiomic features extracted from CT images of lung and liver tumors were proved to contain sufficient information to establish an external/internal motion relationship. We developed a rapid and accurate method based on radiomics to classify the accuracy of monitoring a patient's external surface for lung and liver tumor tracking. Several machine learning algorithms-in particular, MLP-demonstrated excellent classification performance and stability." @default.
- W4313897974 created "2023-01-10" @default.
- W4313897974 creator A5007091069 @default.
- W4313897974 creator A5012677271 @default.
- W4313897974 creator A5020135121 @default.
- W4313897974 creator A5024075471 @default.
- W4313897974 creator A5027961969 @default.
- W4313897974 creator A5039258833 @default.
- W4313897974 creator A5050053624 @default.
- W4313897974 creator A5069308334 @default.
- W4313897974 creator A5087957785 @default.
- W4313897974 creator A5088423634 @default.
- W4313897974 date "2023-03-01" @default.
- W4313897974 modified "2023-09-26" @default.
- W4313897974 title "Machine learning for predicting accuracy of lung and liver tumor motion tracking using radiomic features" @default.
- W4313897974 cites W1408981388 @default.
- W4313897974 cites W1502189796 @default.
- W4313897974 cites W1972981182 @default.
- W4313897974 cites W1983342505 @default.
- W4313897974 cites W1984649402 @default.
- W4313897974 cites W1996728714 @default.
- W4313897974 cites W2003677414 @default.
- W4313897974 cites W2012825335 @default.
- W4313897974 cites W2012920561 @default.
- W4313897974 cites W2016295772 @default.
- W4313897974 cites W2017695843 @default.
- W4313897974 cites W2019289784 @default.
- W4313897974 cites W2019792013 @default.
- W4313897974 cites W2020141781 @default.
- W4313897974 cites W2025356303 @default.
- W4313897974 cites W2026616100 @default.
- W4313897974 cites W2027226834 @default.
- W4313897974 cites W2034484182 @default.
- W4313897974 cites W2040792333 @default.
- W4313897974 cites W2051282811 @default.
- W4313897974 cites W2056651939 @default.
- W4313897974 cites W2059378660 @default.
- W4313897974 cites W2060558233 @default.
- W4313897974 cites W2064356714 @default.
- W4313897974 cites W2072666370 @default.
- W4313897974 cites W2079474469 @default.
- W4313897974 cites W2081042590 @default.
- W4313897974 cites W2082499665 @default.
- W4313897974 cites W2085976270 @default.
- W4313897974 cites W2090391229 @default.
- W4313897974 cites W2094229486 @default.
- W4313897974 cites W2094683285 @default.
- W4313897974 cites W2096423442 @default.
- W4313897974 cites W2107171889 @default.
- W4313897974 cites W2127480863 @default.
- W4313897974 cites W2128739912 @default.
- W4313897974 cites W2131601327 @default.
- W4313897974 cites W2131918706 @default.
- W4313897974 cites W2149146010 @default.
- W4313897974 cites W2154958189 @default.
- W4313897974 cites W2162084438 @default.
- W4313897974 cites W2167648384 @default.
- W4313897974 cites W2167767036 @default.
- W4313897974 cites W2169861238 @default.
- W4313897974 cites W2189880677 @default.
- W4313897974 cites W2251697021 @default.
- W4313897974 cites W2295611034 @default.
- W4313897974 cites W2306570595 @default.
- W4313897974 cites W2311607323 @default.
- W4313897974 cites W2535584353 @default.
- W4313897974 cites W2623144351 @default.
- W4313897974 cites W2734463838 @default.
- W4313897974 cites W2773657247 @default.
- W4313897974 cites W2793233043 @default.
- W4313897974 cites W2807396905 @default.
- W4313897974 cites W2924231309 @default.
- W4313897974 cites W2932988231 @default.
- W4313897974 cites W2944777530 @default.
- W4313897974 cites W3000923891 @default.
- W4313897974 cites W3024811418 @default.
- W4313897974 cites W3092569889 @default.
- W4313897974 cites W3099365598 @default.
- W4313897974 cites W3100859383 @default.
- W4313897974 cites W3135096391 @default.
- W4313897974 cites W3155775572 @default.
- W4313897974 cites W3175695765 @default.
- W4313897974 cites W3181475410 @default.
- W4313897974 cites W3195317582 @default.
- W4313897974 cites W3213987048 @default.
- W4313897974 cites W901235465 @default.
- W4313897974 doi "https://doi.org/10.21037/qims-22-621" @default.
- W4313897974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36915317" @default.
- W4313897974 hasPublicationYear "2023" @default.
- W4313897974 type Work @default.
- W4313897974 citedByCount "1" @default.
- W4313897974 countsByYear W43138979742023 @default.
- W4313897974 crossrefType "journal-article" @default.
- W4313897974 hasAuthorship W4313897974A5007091069 @default.
- W4313897974 hasAuthorship W4313897974A5012677271 @default.
- W4313897974 hasAuthorship W4313897974A5020135121 @default.
- W4313897974 hasAuthorship W4313897974A5024075471 @default.
- W4313897974 hasAuthorship W4313897974A5027961969 @default.
- W4313897974 hasAuthorship W4313897974A5039258833 @default.