Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313898022> ?p ?o ?g. }
- W4313898022 endingPage "402" @default.
- W4313898022 startingPage "402" @default.
- W4313898022 abstract "Forest growing stem volume (GSV) is regarded as one of the most important parameters for the quality evaluation and dynamic monitoring of forest resources. The accuracy of mapping forest GSV is highly related to the employed models and involved remote sensing features, and the criteria of feature evaluation severely affect the performance of the employed models. However, due to the linear or nonlinear relationships between remote sensing features and GSV, widely used evaluation criteria inadequately express the complex sensitivity between forest GSV and spectral features, especially the saturation levels of features in a planted forest. In this study, novel feature evaluation criteria were constructed based on the Pearson correlations and optical saturation levels of the alternative remote sensing features extracted from two common optical remote sensing image sets (GF-1 and Sentinel-2). Initially, the spectral saturation level of each feature was quantified using the kriging spherical model and the quadratic model. Then, optimal feature sets were obtained with the proposed criteria and the linear stepwise regression model. Finally, four widely used machine learning models—support vector machine (SVM), multiple linear stepwise regression (MLR), random forest (RF) and K-neighborhood (KNN)—were employed to map forest GSV in a planted Chinese fir forest. The results showed that the proposed feature evaluation criteria could effectively improve the accuracy of estimating forest GSV and that the systematic distribution of errors between the predicted and ground measurements in the range of forest GSV was less than 300 m3/hm2. After using the proposed feature evaluation criteria, the highest accuracy of mapping GSV was obtained with the RF model for GF-1 images (R2 = 0.49, rRMSE = 28.67%) and the SVM model for Sentinel-2 images (R2 = 0.52, rRMSE = 26.65%), and the decreased rRMSE values ranged from 1.1 to 6.2 for GF-1 images (28.67% to 33.08%) and from 2.3 to 6.8 for Sentinel-2 images (26.85% to 33.28%). It was concluded that the sensitivity of the optimal feature set and the accuracy of the estimated GSV could be improved using the proposed evaluation criteria (less than 300 m3/hm2). However, these criteria were barely able to improve mapping accuracy for a forest with a high GSV (larger than 300 m3/hm2)." @default.
- W4313898022 created "2023-01-10" @default.
- W4313898022 creator A5003452835 @default.
- W4313898022 creator A5008177594 @default.
- W4313898022 creator A5041790532 @default.
- W4313898022 creator A5049361511 @default.
- W4313898022 creator A5059359043 @default.
- W4313898022 creator A5071476733 @default.
- W4313898022 creator A5080514472 @default.
- W4313898022 creator A5081564636 @default.
- W4313898022 creator A5086780566 @default.
- W4313898022 date "2023-01-10" @default.
- W4313898022 modified "2023-10-14" @default.
- W4313898022 title "Mapping Forest Growing Stem Volume Using Novel Feature Evaluation Criteria Based on Spectral Saturation in Planted Chinese Fir Forest" @default.
- W4313898022 cites W1177863458 @default.
- W4313898022 cites W1828991496 @default.
- W4313898022 cites W1983441956 @default.
- W4313898022 cites W1991933965 @default.
- W4313898022 cites W1992679269 @default.
- W4313898022 cites W1996938046 @default.
- W4313898022 cites W2019197965 @default.
- W4313898022 cites W2022224360 @default.
- W4313898022 cites W2035222601 @default.
- W4313898022 cites W2065065370 @default.
- W4313898022 cites W207758080 @default.
- W4313898022 cites W2084986966 @default.
- W4313898022 cites W2113249705 @default.
- W4313898022 cites W2129428798 @default.
- W4313898022 cites W2152406914 @default.
- W4313898022 cites W2155863249 @default.
- W4313898022 cites W2163241395 @default.
- W4313898022 cites W2164850486 @default.
- W4313898022 cites W2219907915 @default.
- W4313898022 cites W2416310637 @default.
- W4313898022 cites W2595526652 @default.
- W4313898022 cites W2620171529 @default.
- W4313898022 cites W2766826930 @default.
- W4313898022 cites W2794636625 @default.
- W4313898022 cites W2886241460 @default.
- W4313898022 cites W2911554154 @default.
- W4313898022 cites W2916382809 @default.
- W4313898022 cites W2955388112 @default.
- W4313898022 cites W2967353317 @default.
- W4313898022 cites W2969890686 @default.
- W4313898022 cites W2995718905 @default.
- W4313898022 cites W2998937092 @default.
- W4313898022 cites W3028037198 @default.
- W4313898022 cites W3033402617 @default.
- W4313898022 cites W3035147592 @default.
- W4313898022 cites W3133827696 @default.
- W4313898022 cites W3144125218 @default.
- W4313898022 cites W3152882560 @default.
- W4313898022 cites W3177949452 @default.
- W4313898022 cites W3197587123 @default.
- W4313898022 cites W3205462867 @default.
- W4313898022 cites W3212718697 @default.
- W4313898022 cites W3214781215 @default.
- W4313898022 cites W3216488732 @default.
- W4313898022 cites W4205784121 @default.
- W4313898022 cites W4304812147 @default.
- W4313898022 doi "https://doi.org/10.3390/rs15020402" @default.
- W4313898022 hasPublicationYear "2023" @default.
- W4313898022 type Work @default.
- W4313898022 citedByCount "0" @default.
- W4313898022 crossrefType "journal-article" @default.
- W4313898022 hasAuthorship W4313898022A5003452835 @default.
- W4313898022 hasAuthorship W4313898022A5008177594 @default.
- W4313898022 hasAuthorship W4313898022A5041790532 @default.
- W4313898022 hasAuthorship W4313898022A5049361511 @default.
- W4313898022 hasAuthorship W4313898022A5059359043 @default.
- W4313898022 hasAuthorship W4313898022A5071476733 @default.
- W4313898022 hasAuthorship W4313898022A5080514472 @default.
- W4313898022 hasAuthorship W4313898022A5081564636 @default.
- W4313898022 hasAuthorship W4313898022A5086780566 @default.
- W4313898022 hasBestOaLocation W43138980221 @default.
- W4313898022 hasConcept C119857082 @default.
- W4313898022 hasConcept C12267149 @default.
- W4313898022 hasConcept C124101348 @default.
- W4313898022 hasConcept C138885662 @default.
- W4313898022 hasConcept C153180895 @default.
- W4313898022 hasConcept C154945302 @default.
- W4313898022 hasConcept C169258074 @default.
- W4313898022 hasConcept C205649164 @default.
- W4313898022 hasConcept C2776401178 @default.
- W4313898022 hasConcept C39432304 @default.
- W4313898022 hasConcept C41008148 @default.
- W4313898022 hasConcept C41895202 @default.
- W4313898022 hasConcept C62649853 @default.
- W4313898022 hasConcept C81692654 @default.
- W4313898022 hasConceptScore W4313898022C119857082 @default.
- W4313898022 hasConceptScore W4313898022C12267149 @default.
- W4313898022 hasConceptScore W4313898022C124101348 @default.
- W4313898022 hasConceptScore W4313898022C138885662 @default.
- W4313898022 hasConceptScore W4313898022C153180895 @default.
- W4313898022 hasConceptScore W4313898022C154945302 @default.
- W4313898022 hasConceptScore W4313898022C169258074 @default.
- W4313898022 hasConceptScore W4313898022C205649164 @default.
- W4313898022 hasConceptScore W4313898022C2776401178 @default.