Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313898064> ?p ?o ?g. }
- W4313898064 endingPage "405" @default.
- W4313898064 startingPage "405" @default.
- W4313898064 abstract "Grassland aboveground biomass (AGB) is an important indicator for studying the change in grassland ecological quality and carbon cycle. The rapid development of high-resolution remote sensing and unmanned aerial vehicles (UAV) provides a new opportunity for accurate estimation of grassland AGB on the plot scale. In this study, the mountain grassland was taken as the research object. Using UAV Light Detection and Ranging (LiDAR) data and multispectral satellite images, the influence of topographic correction methods on AGB estimation was compared and a series of LiDAR metrics and vegetation indices were extracted. On this basis, a comprehensive indicator, the vegetation index-height-intensity model (VHI), was proposed to estimate AGB quickly. The results show that: (1) Among the four topographic correction methods, the Teillet regression has the best effect, and can effectively improve the accuracy of AGB estimation in mountain grassland. The correlation between corrected ratio vegetation index and AGB was the highest (correlation coefficient: 0.682). (2) Among the height and intensity metrics, median height and max intensity yielded the higher accuracy in estimating AGB, with Root Mean Square Error (RMSE) of 322 g/m2 and 333 g/m2, respectively. (3) The VHI integrated spectrum and LiDAR information, and its accuracy for AGB estimation for mountain grassland, was obviously better than other indicators, with an RMSE of 272 g/m2. We also found that the accuracy of VHI in univariate models was comparable to that of complex multivariate models such as stepwise regression, support vector machine, and random forest. This study provides a new approach for estimating grassland AGB with multi-source data. As a simple and effective indicator, VHI has shown strong application potential for grassland AGB estimating in mountainous areas, and can be further applied to grassland carbon cycle research and fine management." @default.
- W4313898064 created "2023-01-10" @default.
- W4313898064 creator A5015331939 @default.
- W4313898064 creator A5017666412 @default.
- W4313898064 creator A5029851581 @default.
- W4313898064 creator A5041025808 @default.
- W4313898064 creator A5046859945 @default.
- W4313898064 creator A5053985746 @default.
- W4313898064 creator A5055260839 @default.
- W4313898064 creator A5068260313 @default.
- W4313898064 creator A5075378610 @default.
- W4313898064 creator A5085352365 @default.
- W4313898064 date "2023-01-09" @default.
- W4313898064 modified "2023-10-14" @default.
- W4313898064 title "Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland" @default.
- W4313898064 cites W1986423201 @default.
- W4313898064 cites W2013160204 @default.
- W4313898064 cites W2018137811 @default.
- W4313898064 cites W2046339565 @default.
- W4313898064 cites W2054691034 @default.
- W4313898064 cites W2069959013 @default.
- W4313898064 cites W2088094521 @default.
- W4313898064 cites W2088869795 @default.
- W4313898064 cites W2097492507 @default.
- W4313898064 cites W2114228414 @default.
- W4313898064 cites W2117339668 @default.
- W4313898064 cites W2119150010 @default.
- W4313898064 cites W2133671088 @default.
- W4313898064 cites W2137933418 @default.
- W4313898064 cites W2141815566 @default.
- W4313898064 cites W2156968119 @default.
- W4313898064 cites W2239022495 @default.
- W4313898064 cites W2508621980 @default.
- W4313898064 cites W2538282875 @default.
- W4313898064 cites W2559736737 @default.
- W4313898064 cites W2583818162 @default.
- W4313898064 cites W2613065510 @default.
- W4313898064 cites W2674804340 @default.
- W4313898064 cites W2767349927 @default.
- W4313898064 cites W2768259735 @default.
- W4313898064 cites W2792308070 @default.
- W4313898064 cites W2792434602 @default.
- W4313898064 cites W2808903498 @default.
- W4313898064 cites W2901028058 @default.
- W4313898064 cites W2918003274 @default.
- W4313898064 cites W2921122163 @default.
- W4313898064 cites W2974830078 @default.
- W4313898064 cites W2976697151 @default.
- W4313898064 cites W3036051036 @default.
- W4313898064 cites W3094271861 @default.
- W4313898064 cites W3112984556 @default.
- W4313898064 cites W3132066934 @default.
- W4313898064 cites W3179206166 @default.
- W4313898064 cites W4200088537 @default.
- W4313898064 cites W4281751969 @default.
- W4313898064 cites W4289793690 @default.
- W4313898064 doi "https://doi.org/10.3390/rs15020405" @default.
- W4313898064 hasPublicationYear "2023" @default.
- W4313898064 type Work @default.
- W4313898064 citedByCount "1" @default.
- W4313898064 countsByYear W43138980642023 @default.
- W4313898064 crossrefType "journal-article" @default.
- W4313898064 hasAuthorship W4313898064A5015331939 @default.
- W4313898064 hasAuthorship W4313898064A5017666412 @default.
- W4313898064 hasAuthorship W4313898064A5029851581 @default.
- W4313898064 hasAuthorship W4313898064A5041025808 @default.
- W4313898064 hasAuthorship W4313898064A5046859945 @default.
- W4313898064 hasAuthorship W4313898064A5053985746 @default.
- W4313898064 hasAuthorship W4313898064A5055260839 @default.
- W4313898064 hasAuthorship W4313898064A5068260313 @default.
- W4313898064 hasAuthorship W4313898064A5075378610 @default.
- W4313898064 hasAuthorship W4313898064A5085352365 @default.
- W4313898064 hasBestOaLocation W43138980641 @default.
- W4313898064 hasConcept C100970517 @default.
- W4313898064 hasConcept C105795698 @default.
- W4313898064 hasConcept C139945424 @default.
- W4313898064 hasConcept C142724271 @default.
- W4313898064 hasConcept C1549246 @default.
- W4313898064 hasConcept C173163844 @default.
- W4313898064 hasConcept C18903297 @default.
- W4313898064 hasConcept C205649164 @default.
- W4313898064 hasConcept C25989453 @default.
- W4313898064 hasConcept C2775835988 @default.
- W4313898064 hasConcept C2776133958 @default.
- W4313898064 hasConcept C2780092901 @default.
- W4313898064 hasConcept C33923547 @default.
- W4313898064 hasConcept C39432304 @default.
- W4313898064 hasConcept C51399673 @default.
- W4313898064 hasConcept C62649853 @default.
- W4313898064 hasConcept C71924100 @default.
- W4313898064 hasConcept C86803240 @default.
- W4313898064 hasConceptScore W4313898064C100970517 @default.
- W4313898064 hasConceptScore W4313898064C105795698 @default.
- W4313898064 hasConceptScore W4313898064C139945424 @default.
- W4313898064 hasConceptScore W4313898064C142724271 @default.
- W4313898064 hasConceptScore W4313898064C1549246 @default.
- W4313898064 hasConceptScore W4313898064C173163844 @default.
- W4313898064 hasConceptScore W4313898064C18903297 @default.