Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315472006> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4315472006 abstract "We consider the filtering and prediction problem for a diffusion process. The signal and observation are modeled by stochastic differential equations (SDEs) driven by correlated Wiener processes. In classical estimation theory, measure-valued stochastic partial differential equations (SPDEs) are derived for the filtering and prediction measures. These equations can be hard to solve numerically. We provide an approximation algorithm using conditional generative adversarial networks (GANs) in combination with signatures, an object from rough path theory. The signature of a sufficiently smooth path determines the path completely. As a result, in some cases, GANs based on signatures have been shown to efficiently approximate the law of a stochastic process. For our algorithm we extend this method to sample from the conditional law, given noisy, partial observation. Our generator is constructed using neural differential equations (NDEs), relying on their universal approximator property. We show well-posedness in providing a rigorous mathematical framework. Numerical results show the efficiency of our algorithm." @default.
- W4315472006 created "2023-01-11" @default.
- W4315472006 creator A5074168790 @default.
- W4315472006 creator A5083576215 @default.
- W4315472006 date "2022-12-06" @default.
- W4315472006 modified "2023-09-27" @default.
- W4315472006 title "Learning the conditional law: signatures and conditional GANs in filtering and prediction of diffusion processes" @default.
- W4315472006 cites W133480826 @default.
- W4315472006 cites W1573874356 @default.
- W4315472006 cites W1968194499 @default.
- W4315472006 cites W1980130100 @default.
- W4315472006 cites W1986784622 @default.
- W4315472006 cites W1993966340 @default.
- W4315472006 cites W2003393668 @default.
- W4315472006 cites W2055496831 @default.
- W4315472006 cites W2070395359 @default.
- W4315472006 cites W2138784338 @default.
- W4315472006 cites W2154890045 @default.
- W4315472006 cites W2964143464 @default.
- W4315472006 cites W3106415951 @default.
- W4315472006 cites W3121121668 @default.
- W4315472006 cites W3146797348 @default.
- W4315472006 cites W3167297489 @default.
- W4315472006 cites W3210704939 @default.
- W4315472006 cites W4211042066 @default.
- W4315472006 cites W4221139972 @default.
- W4315472006 cites W4233762729 @default.
- W4315472006 cites W4247541366 @default.
- W4315472006 cites W4252609867 @default.
- W4315472006 cites W4293182332 @default.
- W4315472006 doi "https://doi.org/10.1109/cdc51059.2022.9993386" @default.
- W4315472006 hasPublicationYear "2022" @default.
- W4315472006 type Work @default.
- W4315472006 citedByCount "0" @default.
- W4315472006 crossrefType "proceedings-article" @default.
- W4315472006 hasAuthorship W4315472006A5074168790 @default.
- W4315472006 hasAuthorship W4315472006A5083576215 @default.
- W4315472006 hasBestOaLocation W43154720062 @default.
- W4315472006 hasConcept C11413529 @default.
- W4315472006 hasConcept C121332964 @default.
- W4315472006 hasConcept C121864883 @default.
- W4315472006 hasConcept C149782125 @default.
- W4315472006 hasConcept C154945302 @default.
- W4315472006 hasConcept C21430997 @default.
- W4315472006 hasConcept C23922673 @default.
- W4315472006 hasConcept C33923547 @default.
- W4315472006 hasConcept C41008148 @default.
- W4315472006 hasConcept C43555835 @default.
- W4315472006 hasConcept C69357855 @default.
- W4315472006 hasConcept C91602232 @default.
- W4315472006 hasConcept C97355855 @default.
- W4315472006 hasConceptScore W4315472006C11413529 @default.
- W4315472006 hasConceptScore W4315472006C121332964 @default.
- W4315472006 hasConceptScore W4315472006C121864883 @default.
- W4315472006 hasConceptScore W4315472006C149782125 @default.
- W4315472006 hasConceptScore W4315472006C154945302 @default.
- W4315472006 hasConceptScore W4315472006C21430997 @default.
- W4315472006 hasConceptScore W4315472006C23922673 @default.
- W4315472006 hasConceptScore W4315472006C33923547 @default.
- W4315472006 hasConceptScore W4315472006C41008148 @default.
- W4315472006 hasConceptScore W4315472006C43555835 @default.
- W4315472006 hasConceptScore W4315472006C69357855 @default.
- W4315472006 hasConceptScore W4315472006C91602232 @default.
- W4315472006 hasConceptScore W4315472006C97355855 @default.
- W4315472006 hasLocation W43154720061 @default.
- W4315472006 hasLocation W43154720062 @default.
- W4315472006 hasOpenAccess W4315472006 @default.
- W4315472006 hasPrimaryLocation W43154720061 @default.
- W4315472006 hasRelatedWork W2016755900 @default.
- W4315472006 hasRelatedWork W2029462653 @default.
- W4315472006 hasRelatedWork W2264567517 @default.
- W4315472006 hasRelatedWork W3122448946 @default.
- W4315472006 hasRelatedWork W3122555292 @default.
- W4315472006 hasRelatedWork W3122866493 @default.
- W4315472006 hasRelatedWork W3124721408 @default.
- W4315472006 hasRelatedWork W3124808993 @default.
- W4315472006 hasRelatedWork W3125664351 @default.
- W4315472006 hasRelatedWork W3125895543 @default.
- W4315472006 isParatext "false" @default.
- W4315472006 isRetracted "false" @default.
- W4315472006 workType "article" @default.