Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315472082> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4315472082 abstract "Solving partial differential equations (PDEs) with random input parameters via standard numerical schemes such as finite element methods is computationally expensive, especially when high-dimensional random parameters are involved. Evaluation of the failure probability involves massive repeated solving equations, which would be computationally prohibitive via traditional Monte Carlo methods. Using neural networks as a surrogate model can somewhat alleviate computational complexity. However, constructing a relatively accurate neural network requires a substantial number of labeled data for training. In this paper, we propose a new mixed residual hybrid (MRH) method for failure probability estimation. On the benefits of absorbing equation form into the loss function of neural networks, none of the labeled data is needed in the training phase. Expensive numerical methods shall not be used unless to correct the outputs in suspicious intervals. Compared to the traditional Monte Carlo method requiring millions of computations, numerical experiments demonstrated the efficiency of the MRH method, which only requires a few thousand calculations." @default.
- W4315472082 created "2023-01-11" @default.
- W4315472082 creator A5017100408 @default.
- W4315472082 creator A5038926450 @default.
- W4315472082 creator A5076980257 @default.
- W4315472082 date "2022-12-11" @default.
- W4315472082 modified "2023-10-01" @default.
- W4315472082 title "A Mixed Residual Hybrid Method For Failure Probability Estimation" @default.
- W4315472082 cites W1965920338 @default.
- W4315472082 cites W1977133516 @default.
- W4315472082 cites W1996226468 @default.
- W4315472082 cites W2003732947 @default.
- W4315472082 cites W2044283475 @default.
- W4315472082 cites W2058542661 @default.
- W4315472082 cites W2085785960 @default.
- W4315472082 cites W2126042051 @default.
- W4315472082 cites W2150592616 @default.
- W4315472082 cites W2270760299 @default.
- W4315472082 cites W2563968020 @default.
- W4315472082 cites W2587848016 @default.
- W4315472082 cites W2749028154 @default.
- W4315472082 cites W2803629276 @default.
- W4315472082 cites W2806370139 @default.
- W4315472082 cites W2899283552 @default.
- W4315472082 cites W2900369848 @default.
- W4315472082 cites W2908541468 @default.
- W4315472082 cites W2963803043 @default.
- W4315472082 cites W2968540709 @default.
- W4315472082 cites W2969381807 @default.
- W4315472082 cites W2999671719 @default.
- W4315472082 cites W3008158085 @default.
- W4315472082 cites W3010849941 @default.
- W4315472082 cites W3163993681 @default.
- W4315472082 cites W4237826793 @default.
- W4315472082 doi "https://doi.org/10.1109/icarcv57592.2022.10004221" @default.
- W4315472082 hasPublicationYear "2022" @default.
- W4315472082 type Work @default.
- W4315472082 citedByCount "1" @default.
- W4315472082 countsByYear W43154720822023 @default.
- W4315472082 crossrefType "proceedings-article" @default.
- W4315472082 hasAuthorship W4315472082A5017100408 @default.
- W4315472082 hasAuthorship W4315472082A5038926450 @default.
- W4315472082 hasAuthorship W4315472082A5076980257 @default.
- W4315472082 hasConcept C105795698 @default.
- W4315472082 hasConcept C11413529 @default.
- W4315472082 hasConcept C127413603 @default.
- W4315472082 hasConcept C155512373 @default.
- W4315472082 hasConcept C201995342 @default.
- W4315472082 hasConcept C33923547 @default.
- W4315472082 hasConcept C41008148 @default.
- W4315472082 hasConcept C96250715 @default.
- W4315472082 hasConceptScore W4315472082C105795698 @default.
- W4315472082 hasConceptScore W4315472082C11413529 @default.
- W4315472082 hasConceptScore W4315472082C127413603 @default.
- W4315472082 hasConceptScore W4315472082C155512373 @default.
- W4315472082 hasConceptScore W4315472082C201995342 @default.
- W4315472082 hasConceptScore W4315472082C33923547 @default.
- W4315472082 hasConceptScore W4315472082C41008148 @default.
- W4315472082 hasConceptScore W4315472082C96250715 @default.
- W4315472082 hasLocation W43154720821 @default.
- W4315472082 hasOpenAccess W4315472082 @default.
- W4315472082 hasPrimaryLocation W43154720821 @default.
- W4315472082 hasRelatedWork W2430546716 @default.
- W4315472082 hasRelatedWork W2439748702 @default.
- W4315472082 hasRelatedWork W2809253131 @default.
- W4315472082 hasRelatedWork W2973451922 @default.
- W4315472082 hasRelatedWork W2982145175 @default.
- W4315472082 hasRelatedWork W303980170 @default.
- W4315472082 hasRelatedWork W3094412894 @default.
- W4315472082 hasRelatedWork W3174094192 @default.
- W4315472082 hasRelatedWork W4243613328 @default.
- W4315472082 hasRelatedWork W4292116820 @default.
- W4315472082 isParatext "false" @default.
- W4315472082 isRetracted "false" @default.
- W4315472082 workType "article" @default.