Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315473112> ?p ?o ?g. }
- W4315473112 endingPage "1655" @default.
- W4315473112 startingPage "1644" @default.
- W4315473112 abstract "Low-rank technique has emerged as a powerful calibrationless alternative for parallel magnetic resonance (MR) imaging. Calibrationless low-rank reconstruction, such as low-rank modeling of local k-space neighborhoods (LORAKS), implicitly exploits both coil sensitivity modulations and the finite spatial support constraint of MR images through an iterative low-rank matrix recovery process. Although powerful, this slow iteration process is computationally demanding and reconstruction requires empirical rank optimization, hampering its robust applications for high-resolution volume imaging. This paper proposes a fast and calibrationless low-rank reconstruction of undersampled multi-slice MR brain data, based on the finite spatial support constraint reformulation with a direct deep learning estimation of spatial support maps. The iteration process of low-rank reconstruction is unrolled into a complex-valued network by training on fully-sampled multi-slice axial brain datasets acquired from the same MR coil system. To utilize coil-subject geometric parameters available for datasets, the model minimizes a hybrid loss on two sets of spatial support maps, corresponding to brain data at the original slice locations as actually acquired and nearby locations within the standard reference coordinate. This deep learning framework was integrated with LORAKS reconstruction and was evaluated with publically available gradient-echo T1-weighted brain datasets. It directly produced high-quality multi-channel spatial support maps from undersampled data, enabling rapid reconstruction without iteration. Moreover, it led to effective reductions of artifacts and noise amplification at high acceleration. In summary, our proposed deep learning framework offers a new strategy to advance the existing calibrationless low-rank reconstruction, rendering it computationally efficient, simple, and robust in practice." @default.
- W4315473112 created "2023-01-11" @default.
- W4315473112 creator A5000017093 @default.
- W4315473112 creator A5006768575 @default.
- W4315473112 creator A5017468904 @default.
- W4315473112 creator A5024715397 @default.
- W4315473112 creator A5047512270 @default.
- W4315473112 creator A5054709496 @default.
- W4315473112 creator A5062751136 @default.
- W4315473112 creator A5087170565 @default.
- W4315473112 date "2023-06-01" @default.
- W4315473112 modified "2023-10-17" @default.
- W4315473112 title "Fast and Calibrationless Low-Rank Parallel Imaging Reconstruction Through Unrolled Deep Learning Estimation of Multi-Channel Spatial Support Maps" @default.
- W4315473112 cites W1497904071 @default.
- W4315473112 cites W1594359125 @default.
- W4315473112 cites W19536506 @default.
- W4315473112 cites W1956034203 @default.
- W4315473112 cites W1977828379 @default.
- W4315473112 cites W2009238259 @default.
- W4315473112 cites W2047544187 @default.
- W4315473112 cites W2097897435 @default.
- W4315473112 cites W2101675075 @default.
- W4315473112 cites W2111388536 @default.
- W4315473112 cites W2117649283 @default.
- W4315473112 cites W2120174605 @default.
- W4315473112 cites W2165142794 @default.
- W4315473112 cites W2226146394 @default.
- W4315473112 cites W2330813655 @default.
- W4315473112 cites W2601784259 @default.
- W4315473112 cites W2604388535 @default.
- W4315473112 cites W2611467245 @default.
- W4315473112 cites W2785239769 @default.
- W4315473112 cites W2789372283 @default.
- W4315473112 cites W2795380527 @default.
- W4315473112 cites W2893726093 @default.
- W4315473112 cites W2911290743 @default.
- W4315473112 cites W2963682501 @default.
- W4315473112 cites W2969785455 @default.
- W4315473112 cites W2975107135 @default.
- W4315473112 cites W2999220188 @default.
- W4315473112 cites W3001319253 @default.
- W4315473112 cites W3004715589 @default.
- W4315473112 cites W3005709683 @default.
- W4315473112 cites W3012906128 @default.
- W4315473112 cites W3047706622 @default.
- W4315473112 cites W3100730608 @default.
- W4315473112 cites W3113722705 @default.
- W4315473112 cites W3125909551 @default.
- W4315473112 cites W3126256014 @default.
- W4315473112 cites W3133902371 @default.
- W4315473112 cites W3137984567 @default.
- W4315473112 cites W3165032792 @default.
- W4315473112 cites W3183777577 @default.
- W4315473112 cites W3215899037 @default.
- W4315473112 cites W4200635639 @default.
- W4315473112 cites W4205855887 @default.
- W4315473112 cites W4230563464 @default.
- W4315473112 doi "https://doi.org/10.1109/tmi.2023.3234968" @default.
- W4315473112 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37018640" @default.
- W4315473112 hasPublicationYear "2023" @default.
- W4315473112 type Work @default.
- W4315473112 citedByCount "1" @default.
- W4315473112 countsByYear W43154731122023 @default.
- W4315473112 crossrefType "journal-article" @default.
- W4315473112 hasAuthorship W4315473112A5000017093 @default.
- W4315473112 hasAuthorship W4315473112A5006768575 @default.
- W4315473112 hasAuthorship W4315473112A5017468904 @default.
- W4315473112 hasAuthorship W4315473112A5024715397 @default.
- W4315473112 hasAuthorship W4315473112A5047512270 @default.
- W4315473112 hasAuthorship W4315473112A5054709496 @default.
- W4315473112 hasAuthorship W4315473112A5062751136 @default.
- W4315473112 hasAuthorship W4315473112A5087170565 @default.
- W4315473112 hasConcept C105795698 @default.
- W4315473112 hasConcept C108583219 @default.
- W4315473112 hasConcept C11413529 @default.
- W4315473112 hasConcept C114614502 @default.
- W4315473112 hasConcept C115961682 @default.
- W4315473112 hasConcept C127162648 @default.
- W4315473112 hasConcept C141379421 @default.
- W4315473112 hasConcept C153180895 @default.
- W4315473112 hasConcept C154945302 @default.
- W4315473112 hasConcept C159620131 @default.
- W4315473112 hasConcept C164226766 @default.
- W4315473112 hasConcept C2524010 @default.
- W4315473112 hasConcept C2776036281 @default.
- W4315473112 hasConcept C31258907 @default.
- W4315473112 hasConcept C33923547 @default.
- W4315473112 hasConcept C41008148 @default.
- W4315473112 hasConcept C99498987 @default.
- W4315473112 hasConceptScore W4315473112C105795698 @default.
- W4315473112 hasConceptScore W4315473112C108583219 @default.
- W4315473112 hasConceptScore W4315473112C11413529 @default.
- W4315473112 hasConceptScore W4315473112C114614502 @default.
- W4315473112 hasConceptScore W4315473112C115961682 @default.
- W4315473112 hasConceptScore W4315473112C127162648 @default.
- W4315473112 hasConceptScore W4315473112C141379421 @default.
- W4315473112 hasConceptScore W4315473112C153180895 @default.
- W4315473112 hasConceptScore W4315473112C154945302 @default.