Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315473666> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4315473666 endingPage "12" @default.
- W4315473666 startingPage "1" @default.
- W4315473666 abstract "In several machine learning (ML)-based Internet of Things (IoT) systems, data is captured by IoT devices and then transmitted over a wireless channel for remote processing. Since noise often appears on the channel (so causing data corruption and consequently an incorrect ML result), channel protection must be provided to guarantee an acceptable error rate for the transmitted data, especially in safety-critical applications. An often-used protection technique employs error correction codes (ECCs); however, even with some improved designs, the power dissipation required by an ECC implementation may still not meet the strict requirements of hardware-constrained platforms. To address this issue, a “joint learning and channel coding” (JLCC) scheme is proposed in this paper. In such a scheme, the ML model is retrained using two methods to tolerate some channel errors, such that the system requires an ECC with significantly lower protection capability. Since ML training is executed remotely, JLCC achieves a significant power reduction for ECC without introducing any additional overhead to the IoT device. An electrocardiogram (ECG) system is taken as a case study to illustrate the proposed JLCC scheme and evaluate its effectiveness. A low-density parity-check (LDPC) code is employed for protection of the system with/without JLCC; its analysis and implementation are presented. Simulation results show that, when employing JLCC with the proposed two retraining methods, an average reduction of 29.15% and 34.82% in the dissipated power is achieved for the ECG sensor when compared to the original system." @default.
- W4315473666 created "2023-01-11" @default.
- W4315473666 creator A5001979328 @default.
- W4315473666 creator A5006269583 @default.
- W4315473666 creator A5029144630 @default.
- W4315473666 creator A5065735444 @default.
- W4315473666 creator A5075788694 @default.
- W4315473666 creator A5076523933 @default.
- W4315473666 date "2023-01-01" @default.
- W4315473666 modified "2023-10-02" @default.
- W4315473666 title "Joint Learning and Channel Coding for Error-Tolerant IoT Systems based on Machine Learning" @default.
- W4315473666 doi "https://doi.org/10.1109/tai.2023.3235778" @default.
- W4315473666 hasPublicationYear "2023" @default.
- W4315473666 type Work @default.
- W4315473666 citedByCount "0" @default.
- W4315473666 crossrefType "journal-article" @default.
- W4315473666 hasAuthorship W4315473666A5001979328 @default.
- W4315473666 hasAuthorship W4315473666A5006269583 @default.
- W4315473666 hasAuthorship W4315473666A5029144630 @default.
- W4315473666 hasAuthorship W4315473666A5065735444 @default.
- W4315473666 hasAuthorship W4315473666A5075788694 @default.
- W4315473666 hasAuthorship W4315473666A5076523933 @default.
- W4315473666 hasConcept C103088060 @default.
- W4315473666 hasConcept C105795698 @default.
- W4315473666 hasConcept C111919701 @default.
- W4315473666 hasConcept C113775141 @default.
- W4315473666 hasConcept C11413529 @default.
- W4315473666 hasConcept C127162648 @default.
- W4315473666 hasConcept C149635348 @default.
- W4315473666 hasConcept C179518139 @default.
- W4315473666 hasConcept C2779960059 @default.
- W4315473666 hasConcept C31258907 @default.
- W4315473666 hasConcept C33923547 @default.
- W4315473666 hasConcept C41008148 @default.
- W4315473666 hasConcept C555944384 @default.
- W4315473666 hasConcept C57273362 @default.
- W4315473666 hasConcept C67692717 @default.
- W4315473666 hasConcept C76155785 @default.
- W4315473666 hasConcept C79403827 @default.
- W4315473666 hasConceptScore W4315473666C103088060 @default.
- W4315473666 hasConceptScore W4315473666C105795698 @default.
- W4315473666 hasConceptScore W4315473666C111919701 @default.
- W4315473666 hasConceptScore W4315473666C113775141 @default.
- W4315473666 hasConceptScore W4315473666C11413529 @default.
- W4315473666 hasConceptScore W4315473666C127162648 @default.
- W4315473666 hasConceptScore W4315473666C149635348 @default.
- W4315473666 hasConceptScore W4315473666C179518139 @default.
- W4315473666 hasConceptScore W4315473666C2779960059 @default.
- W4315473666 hasConceptScore W4315473666C31258907 @default.
- W4315473666 hasConceptScore W4315473666C33923547 @default.
- W4315473666 hasConceptScore W4315473666C41008148 @default.
- W4315473666 hasConceptScore W4315473666C555944384 @default.
- W4315473666 hasConceptScore W4315473666C57273362 @default.
- W4315473666 hasConceptScore W4315473666C67692717 @default.
- W4315473666 hasConceptScore W4315473666C76155785 @default.
- W4315473666 hasConceptScore W4315473666C79403827 @default.
- W4315473666 hasLocation W43154736661 @default.
- W4315473666 hasOpenAccess W4315473666 @default.
- W4315473666 hasPrimaryLocation W43154736661 @default.
- W4315473666 hasRelatedWork W2015197026 @default.
- W4315473666 hasRelatedWork W2105924989 @default.
- W4315473666 hasRelatedWork W2161537064 @default.
- W4315473666 hasRelatedWork W2375981566 @default.
- W4315473666 hasRelatedWork W2769921466 @default.
- W4315473666 hasRelatedWork W2792538686 @default.
- W4315473666 hasRelatedWork W3001699271 @default.
- W4315473666 hasRelatedWork W3121588233 @default.
- W4315473666 hasRelatedWork W3148052241 @default.
- W4315473666 hasRelatedWork W4288391424 @default.
- W4315473666 isParatext "false" @default.
- W4315473666 isRetracted "false" @default.
- W4315473666 workType "article" @default.