Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315473669> ?p ?o ?g. }
- W4315473669 endingPage "3351" @default.
- W4315473669 startingPage "3342" @default.
- W4315473669 abstract "This work presents an electronic nose (EN)-based gas identification and concentration estimation method for the detection of food spoilage. The response data of sensors were acquired through a commercial gas sensor array and data acquisition circuit board and transformed into pictures with the form of the Fourier series. A convolutional neural network (CNN) model was used to identify the pictures from the conversion of sensor data, thus achieving the purpose of identifying the gases (C2H5OH, NH3, and H2S). In order to solve the problem of sample imbalance and to improve the generalization performance of classification models, the synthetic minority oversampling technique (SMOTE) and dropout technique were employed. Fivefold cross-validation was used to evaluate the performance of the model, of which the gas identification accuracy rate reached 96.67%. Moreover, a gas concentration regression model with the advantages of simplicity and strong interpretability was further proposed to estimate the concentrations of C2H5OH, NH3, and H2S. The mean absolute errors and coefficients of determination for the concentration estimation of C2H5OH, NH3, and H2S are (3.71 ppm, 0.968), (0.50 ppm, 0.968), and (0.13 ppm, 0.99), respectively. Furthermore, we used our model to evaluate the freshness of kiwifruit, pork, and beef, and it showed satisfactory predictive performance. The method proposed in this work realizes high-precision detection of gases from food spoilage and has a good application prospect in the rapid judgment of food freshness on the EN system." @default.
- W4315473669 created "2023-01-11" @default.
- W4315473669 creator A5010532288 @default.
- W4315473669 creator A5011753811 @default.
- W4315473669 creator A5022510726 @default.
- W4315473669 creator A5026200576 @default.
- W4315473669 creator A5031577864 @default.
- W4315473669 creator A5035185672 @default.
- W4315473669 creator A5044553021 @default.
- W4315473669 creator A5053254989 @default.
- W4315473669 creator A5066139816 @default.
- W4315473669 creator A5082102582 @default.
- W4315473669 date "2023-02-15" @default.
- W4315473669 modified "2023-10-17" @default.
- W4315473669 title "E-Nose System Based on Fourier Series for Gases Identification and Concentration Estimation From Food Spoilage" @default.
- W4315473669 cites W1995855913 @default.
- W4315473669 cites W2001385546 @default.
- W4315473669 cites W2015224415 @default.
- W4315473669 cites W2017539496 @default.
- W4315473669 cites W2055303691 @default.
- W4315473669 cites W2126092149 @default.
- W4315473669 cites W2143952347 @default.
- W4315473669 cites W2328887565 @default.
- W4315473669 cites W2469794110 @default.
- W4315473669 cites W2572716498 @default.
- W4315473669 cites W2587155720 @default.
- W4315473669 cites W2783662494 @default.
- W4315473669 cites W2800788706 @default.
- W4315473669 cites W2921832736 @default.
- W4315473669 cites W2949604470 @default.
- W4315473669 cites W3005619290 @default.
- W4315473669 cites W3021862418 @default.
- W4315473669 cites W3043610295 @default.
- W4315473669 cites W3095694073 @default.
- W4315473669 cites W3099647611 @default.
- W4315473669 cites W3116792777 @default.
- W4315473669 cites W3122180508 @default.
- W4315473669 cites W3125184329 @default.
- W4315473669 cites W3127427328 @default.
- W4315473669 cites W3174891892 @default.
- W4315473669 cites W3177864696 @default.
- W4315473669 cites W3189085940 @default.
- W4315473669 cites W3195764267 @default.
- W4315473669 cites W3197448661 @default.
- W4315473669 cites W3199622014 @default.
- W4315473669 cites W3205311921 @default.
- W4315473669 cites W3206760989 @default.
- W4315473669 cites W3216363326 @default.
- W4315473669 cites W4206912426 @default.
- W4315473669 cites W4210725925 @default.
- W4315473669 cites W4220830076 @default.
- W4315473669 doi "https://doi.org/10.1109/jsen.2023.3234194" @default.
- W4315473669 hasPublicationYear "2023" @default.
- W4315473669 type Work @default.
- W4315473669 citedByCount "2" @default.
- W4315473669 countsByYear W43154736692023 @default.
- W4315473669 crossrefType "journal-article" @default.
- W4315473669 hasAuthorship W4315473669A5010532288 @default.
- W4315473669 hasAuthorship W4315473669A5011753811 @default.
- W4315473669 hasAuthorship W4315473669A5022510726 @default.
- W4315473669 hasAuthorship W4315473669A5026200576 @default.
- W4315473669 hasAuthorship W4315473669A5031577864 @default.
- W4315473669 hasAuthorship W4315473669A5035185672 @default.
- W4315473669 hasAuthorship W4315473669A5044553021 @default.
- W4315473669 hasAuthorship W4315473669A5053254989 @default.
- W4315473669 hasAuthorship W4315473669A5066139816 @default.
- W4315473669 hasAuthorship W4315473669A5082102582 @default.
- W4315473669 hasBestOaLocation W43154736691 @default.
- W4315473669 hasConcept C119857082 @default.
- W4315473669 hasConcept C147490202 @default.
- W4315473669 hasConcept C151406439 @default.
- W4315473669 hasConcept C154945302 @default.
- W4315473669 hasConcept C186060115 @default.
- W4315473669 hasConcept C22019652 @default.
- W4315473669 hasConcept C23895516 @default.
- W4315473669 hasConcept C41008148 @default.
- W4315473669 hasConcept C50644808 @default.
- W4315473669 hasConcept C523546767 @default.
- W4315473669 hasConcept C54355233 @default.
- W4315473669 hasConcept C81363708 @default.
- W4315473669 hasConcept C86803240 @default.
- W4315473669 hasConceptScore W4315473669C119857082 @default.
- W4315473669 hasConceptScore W4315473669C147490202 @default.
- W4315473669 hasConceptScore W4315473669C151406439 @default.
- W4315473669 hasConceptScore W4315473669C154945302 @default.
- W4315473669 hasConceptScore W4315473669C186060115 @default.
- W4315473669 hasConceptScore W4315473669C22019652 @default.
- W4315473669 hasConceptScore W4315473669C23895516 @default.
- W4315473669 hasConceptScore W4315473669C41008148 @default.
- W4315473669 hasConceptScore W4315473669C50644808 @default.
- W4315473669 hasConceptScore W4315473669C523546767 @default.
- W4315473669 hasConceptScore W4315473669C54355233 @default.
- W4315473669 hasConceptScore W4315473669C81363708 @default.
- W4315473669 hasConceptScore W4315473669C86803240 @default.
- W4315473669 hasFunder F4320310282 @default.
- W4315473669 hasFunder F4320321001 @default.
- W4315473669 hasFunder F4320321885 @default.
- W4315473669 hasFunder F4320322999 @default.