Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315478376> ?p ?o ?g. }
- W4315478376 abstract "Gastric cancer is one of the leading causes of death worldwide. Screening for gastric cancer greatly relies on endoscopy and pathology biopsy, which are invasive and pose financial burdens. Thus, the prevention of the disease by modifying lifestyle-related behaviors and dietary habits or even the prevention of risk factor formation is of great importance. This study aimed to construct an inexpensive, non-invasive, fast, and high-precision diagnostic model using six machine learning (ML) algorithms to classify patients at high or low risk of developing gastric cancer by analyzing individual lifestyle factors.This retrospective study used the data of 2029 individuals from the gastric cancer database of Ayatollah Taleghani Hospital in Abadan City, Iran. The data were randomly separated into training and test sets (ratio 0.7:0.3). Six ML methods, including multilayer perceptron (MLP), support vector machine (SVM) (linear kernel), SVM (RBF kernel), k-nearest neighbors (KNN) (K = 1, 3, 7, 9), random forest (RF), and eXtreme Gradient Boosting (XGBoost), were trained to construct prognostic models before and after performing the relief feature selection method. Finally, to evaluate the models' performance, the metrics derived from the confusion matrix were calculated via a test split and cross-validation.This study found 11 important influence factors for the risk of gastric cancer, such as Helicobacter pylori infection, high salt intake, and chronic atrophic gastritis, among other factors. Comparisons indicated that the XGBoost had the best performance for the risk prediction of gastric cancer.The results suggest that based on simple baseline patient data, the ML techniques have the potential to start the prescreening of gastric cancer and identify high-risk individuals who should proceed with invasive examinations. Our model could also considerably lessen the number of cases that need endoscopic surveillance. Future studies are required to validate the efficacy of the models in a larger and multicenter population." @default.
- W4315478376 created "2023-01-11" @default.
- W4315478376 creator A5015488720 @default.
- W4315478376 creator A5040423334 @default.
- W4315478376 creator A5080382548 @default.
- W4315478376 date "2023-01-10" @default.
- W4315478376 modified "2023-10-14" @default.
- W4315478376 title "Establishing machine learning models to predict the early risk of gastric cancer based on lifestyle factors" @default.
- W4315478376 cites W1874945489 @default.
- W4315478376 cites W1963771239 @default.
- W4315478376 cites W1974938457 @default.
- W4315478376 cites W1977391294 @default.
- W4315478376 cites W1983024255 @default.
- W4315478376 cites W1991181258 @default.
- W4315478376 cites W1997447007 @default.
- W4315478376 cites W1999787261 @default.
- W4315478376 cites W2014279450 @default.
- W4315478376 cites W2027502685 @default.
- W4315478376 cites W2062140163 @default.
- W4315478376 cites W2080337148 @default.
- W4315478376 cites W2118004907 @default.
- W4315478376 cites W2120196880 @default.
- W4315478376 cites W2125772785 @default.
- W4315478376 cites W2134826392 @default.
- W4315478376 cites W2136132422 @default.
- W4315478376 cites W2148837839 @default.
- W4315478376 cites W2158581396 @default.
- W4315478376 cites W2167217798 @default.
- W4315478376 cites W2259187279 @default.
- W4315478376 cites W2295533422 @default.
- W4315478376 cites W2465529860 @default.
- W4315478376 cites W2474334896 @default.
- W4315478376 cites W2475252027 @default.
- W4315478376 cites W2783201053 @default.
- W4315478376 cites W2792467012 @default.
- W4315478376 cites W2802823676 @default.
- W4315478376 cites W2900992792 @default.
- W4315478376 cites W2904005384 @default.
- W4315478376 cites W2910775131 @default.
- W4315478376 cites W2921643578 @default.
- W4315478376 cites W2927994835 @default.
- W4315478376 cites W2942630811 @default.
- W4315478376 cites W2971227365 @default.
- W4315478376 cites W2990181404 @default.
- W4315478376 cites W2995098893 @default.
- W4315478376 cites W3025948831 @default.
- W4315478376 cites W3035800634 @default.
- W4315478376 cites W3088187081 @default.
- W4315478376 cites W3096264765 @default.
- W4315478376 cites W3117063516 @default.
- W4315478376 cites W3118577024 @default.
- W4315478376 cites W3126120061 @default.
- W4315478376 cites W3158452096 @default.
- W4315478376 cites W3200011659 @default.
- W4315478376 cites W4206465094 @default.
- W4315478376 doi "https://doi.org/10.1186/s12876-022-02626-x" @default.
- W4315478376 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36627564" @default.
- W4315478376 hasPublicationYear "2023" @default.
- W4315478376 type Work @default.
- W4315478376 citedByCount "2" @default.
- W4315478376 countsByYear W43154783762023 @default.
- W4315478376 crossrefType "journal-article" @default.
- W4315478376 hasAuthorship W4315478376A5015488720 @default.
- W4315478376 hasAuthorship W4315478376A5040423334 @default.
- W4315478376 hasAuthorship W4315478376A5080382548 @default.
- W4315478376 hasBestOaLocation W43154783761 @default.
- W4315478376 hasConcept C119857082 @default.
- W4315478376 hasConcept C121608353 @default.
- W4315478376 hasConcept C12267149 @default.
- W4315478376 hasConcept C126322002 @default.
- W4315478376 hasConcept C138602881 @default.
- W4315478376 hasConcept C151956035 @default.
- W4315478376 hasConcept C154945302 @default.
- W4315478376 hasConcept C169258074 @default.
- W4315478376 hasConcept C41008148 @default.
- W4315478376 hasConcept C71924100 @default.
- W4315478376 hasConceptScore W4315478376C119857082 @default.
- W4315478376 hasConceptScore W4315478376C121608353 @default.
- W4315478376 hasConceptScore W4315478376C12267149 @default.
- W4315478376 hasConceptScore W4315478376C126322002 @default.
- W4315478376 hasConceptScore W4315478376C138602881 @default.
- W4315478376 hasConceptScore W4315478376C151956035 @default.
- W4315478376 hasConceptScore W4315478376C154945302 @default.
- W4315478376 hasConceptScore W4315478376C169258074 @default.
- W4315478376 hasConceptScore W4315478376C41008148 @default.
- W4315478376 hasConceptScore W4315478376C71924100 @default.
- W4315478376 hasIssue "1" @default.
- W4315478376 hasLocation W43154783761 @default.
- W4315478376 hasLocation W43154783762 @default.
- W4315478376 hasLocation W43154783763 @default.
- W4315478376 hasOpenAccess W4315478376 @default.
- W4315478376 hasPrimaryLocation W43154783761 @default.
- W4315478376 hasRelatedWork W3138469915 @default.
- W4315478376 hasRelatedWork W3195168932 @default.
- W4315478376 hasRelatedWork W4293525103 @default.
- W4315478376 hasRelatedWork W4321636153 @default.
- W4315478376 hasRelatedWork W4367335893 @default.
- W4315478376 hasRelatedWork W4377964522 @default.
- W4315478376 hasRelatedWork W4383535405 @default.
- W4315478376 hasRelatedWork W4384345534 @default.