Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315481018> ?p ?o ?g. }
- W4315481018 abstract "Objective The purpose of this paper was to develop a machine learning algorithm with good performance in predicting bone metastasis (BM) in non-small cell lung cancer (NSCLC) and establish a simple web predictor based on the algorithm. Methods Patients who diagnosed with NSCLC between 2010 and 2018 in the Surveillance, Epidemiology and End Results (SEER) database were involved. To increase the extensibility of the research, data of patients who first diagnosed with NSCLC at the First Affiliated Hospital of Nanchang University between January 2007 and December 2016 were also included in this study. Independent risk factors for BM in NSCLC were screened by univariate and multivariate logistic regression. At this basis, we chose six commonly machine learning algorithms to build predictive models, including Logistic Regression (LR), Decision tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Naive Bayes classifiers (NBC) and eXtreme gradient boosting (XGB). Then, the best model was identified to build the web-predictor for predicting BM of NSCLC patients. Finally, area under receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were used to evaluate the performance of these models. Results A total of 50581 NSCLC patients were included in this study, and 5087(10.06%) of them developed BM. The sex, grade, laterality, histology, T stage, N stage, and chemotherapy were independent risk factors for NSCLC. Of these six models, the machine learning model built by the XGB algorithm performed best in both internal and external data setting validation, with AUC scores of 0.808 and 0.841, respectively. Then, the XGB algorithm was used to build a web predictor of BM from NSCLC. Conclusion This study developed a web predictor based XGB algorithm for predicting the risk of BM in NSCLC patients, which may assist doctors for clinical decision making" @default.
- W4315481018 created "2023-01-11" @default.
- W4315481018 creator A5017865816 @default.
- W4315481018 creator A5030526219 @default.
- W4315481018 creator A5051819670 @default.
- W4315481018 creator A5054512670 @default.
- W4315481018 creator A5055487955 @default.
- W4315481018 creator A5063900505 @default.
- W4315481018 creator A5076370858 @default.
- W4315481018 creator A5091800716 @default.
- W4315481018 date "2023-01-09" @default.
- W4315481018 modified "2023-09-25" @default.
- W4315481018 title "Prediction of bone metastasis in non-small cell lung cancer based on machine learning" @default.
- W4315481018 cites W1965252618 @default.
- W4315481018 cites W2072138283 @default.
- W4315481018 cites W2177870565 @default.
- W4315481018 cites W2512558631 @default.
- W4315481018 cites W2556763265 @default.
- W4315481018 cites W2570618306 @default.
- W4315481018 cites W2617724908 @default.
- W4315481018 cites W2748292963 @default.
- W4315481018 cites W2781319840 @default.
- W4315481018 cites W2801220644 @default.
- W4315481018 cites W2900905586 @default.
- W4315481018 cites W2902907165 @default.
- W4315481018 cites W2903376111 @default.
- W4315481018 cites W2910093308 @default.
- W4315481018 cites W2936056011 @default.
- W4315481018 cites W2940010972 @default.
- W4315481018 cites W2967636611 @default.
- W4315481018 cites W3000686922 @default.
- W4315481018 cites W3008695158 @default.
- W4315481018 cites W3010280017 @default.
- W4315481018 cites W3014413945 @default.
- W4315481018 cites W3022605230 @default.
- W4315481018 cites W3023390399 @default.
- W4315481018 cites W3030046362 @default.
- W4315481018 cites W3030278180 @default.
- W4315481018 cites W3043726119 @default.
- W4315481018 cites W3067286136 @default.
- W4315481018 cites W3081717401 @default.
- W4315481018 cites W3094932786 @default.
- W4315481018 cites W3102476541 @default.
- W4315481018 cites W3119080408 @default.
- W4315481018 cites W3120071812 @default.
- W4315481018 cites W3126648585 @default.
- W4315481018 cites W3129661049 @default.
- W4315481018 cites W3153178523 @default.
- W4315481018 cites W3161536126 @default.
- W4315481018 cites W3204435099 @default.
- W4315481018 cites W3211436737 @default.
- W4315481018 cites W3214851074 @default.
- W4315481018 cites W3214867187 @default.
- W4315481018 cites W3215884870 @default.
- W4315481018 cites W4206335918 @default.
- W4315481018 cites W4211059596 @default.
- W4315481018 doi "https://doi.org/10.3389/fonc.2022.1054300" @default.
- W4315481018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36698411" @default.
- W4315481018 hasPublicationYear "2023" @default.
- W4315481018 type Work @default.
- W4315481018 citedByCount "2" @default.
- W4315481018 countsByYear W43154810182023 @default.
- W4315481018 crossrefType "journal-article" @default.
- W4315481018 hasAuthorship W4315481018A5017865816 @default.
- W4315481018 hasAuthorship W4315481018A5030526219 @default.
- W4315481018 hasAuthorship W4315481018A5051819670 @default.
- W4315481018 hasAuthorship W4315481018A5054512670 @default.
- W4315481018 hasAuthorship W4315481018A5055487955 @default.
- W4315481018 hasAuthorship W4315481018A5063900505 @default.
- W4315481018 hasAuthorship W4315481018A5076370858 @default.
- W4315481018 hasAuthorship W4315481018A5091800716 @default.
- W4315481018 hasBestOaLocation W43154810181 @default.
- W4315481018 hasConcept C11413529 @default.
- W4315481018 hasConcept C119857082 @default.
- W4315481018 hasConcept C121608353 @default.
- W4315481018 hasConcept C12267149 @default.
- W4315481018 hasConcept C126322002 @default.
- W4315481018 hasConcept C143998085 @default.
- W4315481018 hasConcept C146357865 @default.
- W4315481018 hasConcept C151730666 @default.
- W4315481018 hasConcept C151956035 @default.
- W4315481018 hasConcept C154945302 @default.
- W4315481018 hasConcept C161584116 @default.
- W4315481018 hasConcept C169258074 @default.
- W4315481018 hasConcept C199163554 @default.
- W4315481018 hasConcept C2777783956 @default.
- W4315481018 hasConcept C2779013556 @default.
- W4315481018 hasConcept C41008148 @default.
- W4315481018 hasConcept C52001869 @default.
- W4315481018 hasConcept C58471807 @default.
- W4315481018 hasConcept C70153297 @default.
- W4315481018 hasConcept C71924100 @default.
- W4315481018 hasConcept C84525736 @default.
- W4315481018 hasConcept C86803240 @default.
- W4315481018 hasConceptScore W4315481018C11413529 @default.
- W4315481018 hasConceptScore W4315481018C119857082 @default.
- W4315481018 hasConceptScore W4315481018C121608353 @default.
- W4315481018 hasConceptScore W4315481018C12267149 @default.
- W4315481018 hasConceptScore W4315481018C126322002 @default.
- W4315481018 hasConceptScore W4315481018C143998085 @default.