Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315488157> ?p ?o ?g. }
- W4315488157 endingPage "881" @default.
- W4315488157 startingPage "866" @default.
- W4315488157 abstract "Surface weather parameters detain high socioeconomic impact and strategic insights for all users, in all domains (aviation, marine traffic, agriculture, etc.). However, those parameters were mainly predicted by using deterministic numerical weather prediction (NWP) models that include a wealth of uncertainties. The purpose of this study is to contribute in improving low-cost computationally ensemble forecasting of those parameters using analog ensemble method (AnEn) and comparing it to the operational mesoscale deterministic model (AROME) all over the main airports of Morocco using 5-yr period (2016–2020) of hourly datasets. An analog for a given station and forecast lead time is a past prediction, from the same model that has similar values for selected predictors of the current model forecast. Best analogs verifying observations form AnEn ensemble members. To picture seasonal dependency, two configurations were set; a basic configuration where analogs may come from any past date and a restricted configuration where analogs should belong to a day window around the target forecast. Furthermore, a new predictors weighting strategy is developed by using machine learning techniques (linear regression, random forest, and XGBoost). This approach is expected to accomplish both the selection of relevant predictors as well as finding their optimal weights, and hence preserve physical meaning and correlations of the used weather variables. Results analysis shows that the developed AnEn system exhibits a good statistical consistency and it significantly improves the deterministic forecast performance temporally and spatially by up to 50% for Bias (mean error) and 30% for RMSE (root-mean-square error) at most of the airports. This improvement varies as a function of lead times and seasons compared to the AROME model and to the basic AnEn configuration. The results show also that AnEn performance is geographically dependent where a slight worsening is found for some airports." @default.
- W4315488157 created "2023-01-11" @default.
- W4315488157 creator A5028493720 @default.
- W4315488157 creator A5036760176 @default.
- W4315488157 creator A5082617704 @default.
- W4315488157 date "2022-12-01" @default.
- W4315488157 modified "2023-10-01" @default.
- W4315488157 title "Surface Weather Parameters Forecasting Using Analog Ensemble Method over the Main Airports of Morocco" @default.
- W4315488157 cites W1120922828 @default.
- W4315488157 cites W1845589823 @default.
- W4315488157 cites W1980443135 @default.
- W4315488157 cites W2001673819 @default.
- W4315488157 cites W2002378211 @default.
- W4315488157 cites W2016823018 @default.
- W4315488157 cites W2017765171 @default.
- W4315488157 cites W2018936422 @default.
- W4315488157 cites W2024991751 @default.
- W4315488157 cites W2046078150 @default.
- W4315488157 cites W2049367182 @default.
- W4315488157 cites W2049741199 @default.
- W4315488157 cites W2064093862 @default.
- W4315488157 cites W2068575168 @default.
- W4315488157 cites W2070457500 @default.
- W4315488157 cites W2082396700 @default.
- W4315488157 cites W2091214913 @default.
- W4315488157 cites W2099274213 @default.
- W4315488157 cites W2103779238 @default.
- W4315488157 cites W2112863322 @default.
- W4315488157 cites W2128469217 @default.
- W4315488157 cites W2133144322 @default.
- W4315488157 cites W2144668858 @default.
- W4315488157 cites W2147087715 @default.
- W4315488157 cites W2148389972 @default.
- W4315488157 cites W2153882431 @default.
- W4315488157 cites W2157473329 @default.
- W4315488157 cites W2159411537 @default.
- W4315488157 cites W2170860720 @default.
- W4315488157 cites W2171859864 @default.
- W4315488157 cites W2178298554 @default.
- W4315488157 cites W2179952483 @default.
- W4315488157 cites W2253075954 @default.
- W4315488157 cites W2337485050 @default.
- W4315488157 cites W2343000750 @default.
- W4315488157 cites W2404641003 @default.
- W4315488157 cites W2411299941 @default.
- W4315488157 cites W2462235441 @default.
- W4315488157 cites W2587699986 @default.
- W4315488157 cites W2591345340 @default.
- W4315488157 cites W2606437257 @default.
- W4315488157 cites W2737355539 @default.
- W4315488157 cites W2748401178 @default.
- W4315488157 cites W2782176193 @default.
- W4315488157 cites W2796642430 @default.
- W4315488157 cites W2801828426 @default.
- W4315488157 cites W2911964244 @default.
- W4315488157 cites W2931947283 @default.
- W4315488157 cites W2964076992 @default.
- W4315488157 cites W2970258909 @default.
- W4315488157 cites W2994681726 @default.
- W4315488157 cites W2996388794 @default.
- W4315488157 cites W2998676289 @default.
- W4315488157 cites W3102476541 @default.
- W4315488157 cites W4243399945 @default.
- W4315488157 doi "https://doi.org/10.1007/s13351-022-2019-0" @default.
- W4315488157 hasPublicationYear "2022" @default.
- W4315488157 type Work @default.
- W4315488157 citedByCount "0" @default.
- W4315488157 crossrefType "journal-article" @default.
- W4315488157 hasAuthorship W4315488157A5028493720 @default.
- W4315488157 hasAuthorship W4315488157A5036760176 @default.
- W4315488157 hasAuthorship W4315488157A5082617704 @default.
- W4315488157 hasBestOaLocation W43154881572 @default.
- W4315488157 hasConcept C105795698 @default.
- W4315488157 hasConcept C119898033 @default.
- W4315488157 hasConcept C126838900 @default.
- W4315488157 hasConcept C139945424 @default.
- W4315488157 hasConcept C147947694 @default.
- W4315488157 hasConcept C153294291 @default.
- W4315488157 hasConcept C154945302 @default.
- W4315488157 hasConcept C169258074 @default.
- W4315488157 hasConcept C183115368 @default.
- W4315488157 hasConcept C205649164 @default.
- W4315488157 hasConcept C21001229 @default.
- W4315488157 hasConcept C2776436953 @default.
- W4315488157 hasConcept C33923547 @default.
- W4315488157 hasConcept C37505551 @default.
- W4315488157 hasConcept C41008148 @default.
- W4315488157 hasConcept C48921125 @default.
- W4315488157 hasConcept C71924100 @default.
- W4315488157 hasConceptScore W4315488157C105795698 @default.
- W4315488157 hasConceptScore W4315488157C119898033 @default.
- W4315488157 hasConceptScore W4315488157C126838900 @default.
- W4315488157 hasConceptScore W4315488157C139945424 @default.
- W4315488157 hasConceptScore W4315488157C147947694 @default.
- W4315488157 hasConceptScore W4315488157C153294291 @default.
- W4315488157 hasConceptScore W4315488157C154945302 @default.
- W4315488157 hasConceptScore W4315488157C169258074 @default.
- W4315488157 hasConceptScore W4315488157C183115368 @default.