Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315490168> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4315490168 endingPage "107347" @default.
- W4315490168 startingPage "107347" @default.
- W4315490168 abstract "Cardiovascular disease has a huge impact on health care services, originating unsustainable costs at clinical, social, and economic levels. In this context, patients’ risk stratification tools are central to support clinical decisions contributing to the implementation of effective preventive health care. Although useful, these tools present some limitations, in particular, some lack of performance as well as the impossibility to consider new risk factors potentially important in the prognosis of severe cardiac events. Moreover, the actual use of these tools in the daily practice requires the physicians’ trust. The main goal of this work addresses these two issues: (i) evaluate the importance of inflammation biomarkers when combined with a risk assessment tool; (ii) incorporation of personalization and interpretability as key elements of that assessment. Firstly, machine learning based models were created to assess the potential of the inflammation biomarkers applied in secondary prevention, namely in the prediction of the six month risk of death/myocardial infarction. Then, an approach based on three main phases was created: (i) set of interpretable rules supported by clinical evidence; (ii) selection based on a machine learning classifier able to identify for a given patient the most suitable subset of rules; (iii) an ensemble scheme combining the previous subset of rules in the estimation of the patient cardiovascular risk. All the results were statistically validated (t-test, Wilcoxon-signed rank test) according to a previous verification of data normality (Shapiro-Wilk). The proposed methodology was applied to a real acute coronary syndrome patients dataset (N = 1544) from the Cardiology Unit of Coimbra Hospital and Universitary centre. The first assessment was based on the GRACE tool and a Random Forest classifier, the incorporation of inflammation biomarkers achieved SE=0.83; SP=0.84 whereas the original GRACE risk factors reached SE=0.75; SP=0.85. In the second phase, the proposed approach with inflammation biomarkers achieved SE=0.763 and SP=0.778. This approach confirms the potential of combining inflammation markers with the GRACE score, increasing SE and SP, when compared with the original GRACE. Additionally, it assures interpretability and personalization, which are critical issues to allow its application in the daily clinical practice." @default.
- W4315490168 created "2023-01-11" @default.
- W4315490168 creator A5002510987 @default.
- W4315490168 creator A5017050304 @default.
- W4315490168 creator A5066311350 @default.
- W4315490168 creator A5068198903 @default.
- W4315490168 creator A5083997342 @default.
- W4315490168 date "2023-03-01" @default.
- W4315490168 modified "2023-09-29" @default.
- W4315490168 title "An interpretable machine learning approach to estimate the influence of inflammation biomarkers on cardiovascular risk assessment" @default.
- W4315490168 cites W2100419955 @default.
- W4315490168 cites W2134080524 @default.
- W4315490168 cites W2262638096 @default.
- W4315490168 cites W2341256599 @default.
- W4315490168 cites W2581082771 @default.
- W4315490168 cites W2783063799 @default.
- W4315490168 cites W2890909864 @default.
- W4315490168 cites W2982791628 @default.
- W4315490168 cites W3009069331 @default.
- W4315490168 cites W3046238651 @default.
- W4315490168 cites W3109682927 @default.
- W4315490168 cites W3116286104 @default.
- W4315490168 cites W3203311330 @default.
- W4315490168 cites W4223908164 @default.
- W4315490168 doi "https://doi.org/10.1016/j.cmpb.2023.107347" @default.
- W4315490168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36645940" @default.
- W4315490168 hasPublicationYear "2023" @default.
- W4315490168 type Work @default.
- W4315490168 citedByCount "2" @default.
- W4315490168 countsByYear W43154901682023 @default.
- W4315490168 crossrefType "journal-article" @default.
- W4315490168 hasAuthorship W4315490168A5002510987 @default.
- W4315490168 hasAuthorship W4315490168A5017050304 @default.
- W4315490168 hasAuthorship W4315490168A5066311350 @default.
- W4315490168 hasAuthorship W4315490168A5068198903 @default.
- W4315490168 hasAuthorship W4315490168A5083997342 @default.
- W4315490168 hasBestOaLocation W43154901681 @default.
- W4315490168 hasConcept C119857082 @default.
- W4315490168 hasConcept C126322002 @default.
- W4315490168 hasConcept C12868164 @default.
- W4315490168 hasConcept C151730666 @default.
- W4315490168 hasConcept C154945302 @default.
- W4315490168 hasConcept C160735492 @default.
- W4315490168 hasConcept C162324750 @default.
- W4315490168 hasConcept C206041023 @default.
- W4315490168 hasConcept C2777698277 @default.
- W4315490168 hasConcept C2779343474 @default.
- W4315490168 hasConcept C2781067378 @default.
- W4315490168 hasConcept C41008148 @default.
- W4315490168 hasConcept C500558357 @default.
- W4315490168 hasConcept C50522688 @default.
- W4315490168 hasConcept C71924100 @default.
- W4315490168 hasConcept C86803240 @default.
- W4315490168 hasConceptScore W4315490168C119857082 @default.
- W4315490168 hasConceptScore W4315490168C126322002 @default.
- W4315490168 hasConceptScore W4315490168C12868164 @default.
- W4315490168 hasConceptScore W4315490168C151730666 @default.
- W4315490168 hasConceptScore W4315490168C154945302 @default.
- W4315490168 hasConceptScore W4315490168C160735492 @default.
- W4315490168 hasConceptScore W4315490168C162324750 @default.
- W4315490168 hasConceptScore W4315490168C206041023 @default.
- W4315490168 hasConceptScore W4315490168C2777698277 @default.
- W4315490168 hasConceptScore W4315490168C2779343474 @default.
- W4315490168 hasConceptScore W4315490168C2781067378 @default.
- W4315490168 hasConceptScore W4315490168C41008148 @default.
- W4315490168 hasConceptScore W4315490168C500558357 @default.
- W4315490168 hasConceptScore W4315490168C50522688 @default.
- W4315490168 hasConceptScore W4315490168C71924100 @default.
- W4315490168 hasConceptScore W4315490168C86803240 @default.
- W4315490168 hasFunder F4320323642 @default.
- W4315490168 hasFunder F4320334779 @default.
- W4315490168 hasLocation W43154901681 @default.
- W4315490168 hasLocation W43154901682 @default.
- W4315490168 hasOpenAccess W4315490168 @default.
- W4315490168 hasPrimaryLocation W43154901681 @default.
- W4315490168 hasRelatedWork W2748952813 @default.
- W4315490168 hasRelatedWork W2899084033 @default.
- W4315490168 hasRelatedWork W3006943036 @default.
- W4315490168 hasRelatedWork W4200511449 @default.
- W4315490168 hasRelatedWork W4206534706 @default.
- W4315490168 hasRelatedWork W4229079080 @default.
- W4315490168 hasRelatedWork W4299487748 @default.
- W4315490168 hasRelatedWork W4385957992 @default.
- W4315490168 hasRelatedWork W4385965371 @default.
- W4315490168 hasRelatedWork W4386025632 @default.
- W4315490168 hasVolume "230" @default.
- W4315490168 isParatext "false" @default.
- W4315490168 isRetracted "false" @default.
- W4315490168 workType "article" @default.