Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315491014> ?p ?o ?g. }
- W4315491014 abstract "Glass transitions are widely observed in various types of soft matter systems. However, the physical mechanism of these transitions remains elusive despite years of ambitious research. In particular, an important unanswered question is whether the glass transition is accompanied by a divergence of the correlation lengths of the characteristic static structures. In this study, we develop a deep-neural-network-based method that is used to extract the characteristic local meso-structures solely from instantaneous particle configurations without any information about the dynamics. We first train a neural network to classify configurations of liquids and glasses correctly. Then, we obtain the characteristic structures by quantifying the grounds for the decisions made by the network using Gradient-weighted Class Activation Mapping (Grad-CAM). We consider two qualitatively different glass-forming binary systems, and through comparisons with several established structural indicators, we demonstrate that our system can be used to identify characteristic structures that depend on the details of the systems. Moreover, the extracted structures are remarkably correlated with the non-equilibrium aging dynamics in thermal fluctuations." @default.
- W4315491014 created "2023-01-11" @default.
- W4315491014 creator A5015154124 @default.
- W4315491014 creator A5048008370 @default.
- W4315491014 creator A5090303530 @default.
- W4315491014 date "2023-01-09" @default.
- W4315491014 modified "2023-10-18" @default.
- W4315491014 title "What do deep neural networks find in disordered structures of glasses?" @default.
- W4315491014 cites W1817436417 @default.
- W4315491014 cites W1970422665 @default.
- W4315491014 cites W1971354120 @default.
- W4315491014 cites W1974195642 @default.
- W4315491014 cites W1975863482 @default.
- W4315491014 cites W1979139237 @default.
- W4315491014 cites W1996016803 @default.
- W4315491014 cites W2002112745 @default.
- W4315491014 cites W2009905464 @default.
- W4315491014 cites W2021845634 @default.
- W4315491014 cites W2036882345 @default.
- W4315491014 cites W2036929199 @default.
- W4315491014 cites W2040179043 @default.
- W4315491014 cites W2045055947 @default.
- W4315491014 cites W2046645394 @default.
- W4315491014 cites W2048145097 @default.
- W4315491014 cites W2048421180 @default.
- W4315491014 cites W2054265141 @default.
- W4315491014 cites W2057532137 @default.
- W4315491014 cites W2062430564 @default.
- W4315491014 cites W2064219032 @default.
- W4315491014 cites W2069887987 @default.
- W4315491014 cites W2070990085 @default.
- W4315491014 cites W2080162508 @default.
- W4315491014 cites W2089318713 @default.
- W4315491014 cites W2090199313 @default.
- W4315491014 cites W2094132409 @default.
- W4315491014 cites W2114479908 @default.
- W4315491014 cites W2118032855 @default.
- W4315491014 cites W2135835362 @default.
- W4315491014 cites W2154701653 @default.
- W4315491014 cites W2239232218 @default.
- W4315491014 cites W2516912949 @default.
- W4315491014 cites W2525748878 @default.
- W4315491014 cites W2556131504 @default.
- W4315491014 cites W2766760946 @default.
- W4315491014 cites W2769613897 @default.
- W4315491014 cites W2791063351 @default.
- W4315491014 cites W2793308543 @default.
- W4315491014 cites W2794168925 @default.
- W4315491014 cites W2944973918 @default.
- W4315491014 cites W2953259383 @default.
- W4315491014 cites W2962929001 @default.
- W4315491014 cites W2981992823 @default.
- W4315491014 cites W2990886775 @default.
- W4315491014 cites W2993156875 @default.
- W4315491014 cites W3007937117 @default.
- W4315491014 cites W3014178136 @default.
- W4315491014 cites W3023192521 @default.
- W4315491014 cites W3083550498 @default.
- W4315491014 cites W3094406519 @default.
- W4315491014 cites W3099801920 @default.
- W4315491014 cites W3102520721 @default.
- W4315491014 cites W3102564565 @default.
- W4315491014 cites W3104679745 @default.
- W4315491014 cites W3107106962 @default.
- W4315491014 cites W4214873460 @default.
- W4315491014 cites W4225642708 @default.
- W4315491014 cites W4294015273 @default.
- W4315491014 cites W4296567466 @default.
- W4315491014 doi "https://doi.org/10.3389/fphy.2022.1007861" @default.
- W4315491014 hasPublicationYear "2023" @default.
- W4315491014 type Work @default.
- W4315491014 citedByCount "3" @default.
- W4315491014 countsByYear W43154910142023 @default.
- W4315491014 crossrefType "journal-article" @default.
- W4315491014 hasAuthorship W4315491014A5015154124 @default.
- W4315491014 hasAuthorship W4315491014A5048008370 @default.
- W4315491014 hasAuthorship W4315491014A5090303530 @default.
- W4315491014 hasBestOaLocation W43154910141 @default.
- W4315491014 hasConcept C121332964 @default.
- W4315491014 hasConcept C121864883 @default.
- W4315491014 hasConcept C122865956 @default.
- W4315491014 hasConcept C138885662 @default.
- W4315491014 hasConcept C147789679 @default.
- W4315491014 hasConcept C154945302 @default.
- W4315491014 hasConcept C185592680 @default.
- W4315491014 hasConcept C186060115 @default.
- W4315491014 hasConcept C204530211 @default.
- W4315491014 hasConcept C207390915 @default.
- W4315491014 hasConcept C2984842247 @default.
- W4315491014 hasConcept C2988224531 @default.
- W4315491014 hasConcept C33923547 @default.
- W4315491014 hasConcept C41008148 @default.
- W4315491014 hasConcept C41895202 @default.
- W4315491014 hasConcept C46141821 @default.
- W4315491014 hasConcept C47822265 @default.
- W4315491014 hasConcept C48372109 @default.
- W4315491014 hasConcept C48620588 @default.
- W4315491014 hasConcept C50644808 @default.
- W4315491014 hasConcept C521977710 @default.
- W4315491014 hasConcept C59789625 @default.