Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315570245> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4315570245 abstract "Abstract. We assessed different coupled data assimilation strategies with a hierarchy of coupled models, ranging from the simple coupled Lorenz model to the state-of-the-art coupled general circulation model CFSv2. With the coupled Lorenz model, we assessed the analysis accuracy by strongly-coupled Ensemble Kalman Filter (EnKF) and 4D-Variational (4D-Var) methods with varying assimilation window lengths. The analysis accuracy of the strongly-coupled EnKF with a short assimilation window is comparable to that of 4D-Var with a long assimilation window. For 4D-Var, the strongly-coupled approach with the coupled model produces more accurate ocean analysis than the ECCO-like approach using the uncoupled ocean model. Experiments with the coupled quasi-geostrophic model conclude that the strongly-coupled approach outperforms the weakly-coupled and uncoupled approaches for both the full-rank EnKF and 4D-Var, with the strongly-coupled EnKF and 4D-Var showing a similar level of accuracy higher than other coupled data assimilation approaches such as the outer loop coupling. A strongly-coupled EnKF software framework is developed and applied to the intermediate-complexity coupled model SPEEDY-NEMO and the state-of-the-art operational coupled model CFSv2. Experiments assimilating synthetic or real atmospheric observations into the ocean through strongly-coupled EnKF show that the strongly-coupled approach improves the analysis of the atmosphere and upper oceans, but degrades observation fits in the deep ocean, probably due to the unreliable error correlation estimated by a small ensemble. The correlation-cutoff method is developed to reduce the unreliable error correlations between physically irrelevant model states and observations. Experiments with the coupled Lorenz model demonstrate that strongly-coupled EnKF informed by the correlation-cutoff method produces more accurate coupled analyses than the weakly-coupled and plain strongly-coupled EnKF regardless of the ensemble size. To extend the correlation-cutoff method to operational coupled models, a neural network approach is proposed to systematically acquire the observation localization functions for all pairs between the model state and observation types. The following strongly-coupled EnKF experiments with an intermediate-complexity coupled model show promising results with this method." @default.
- W4315570245 created "2023-01-11" @default.
- W4315570245 creator A5029404716 @default.
- W4315570245 creator A5044070342 @default.
- W4315570245 creator A5055745873 @default.
- W4315570245 creator A5062003303 @default.
- W4315570245 creator A5062555136 @default.
- W4315570245 date "2023-01-11" @default.
- W4315570245 modified "2023-10-16" @default.
- W4315570245 title "Towards Strongly-coupled Ensemble Data Assimilation with Additional Improvements from Machine Learning" @default.
- W4315570245 doi "https://doi.org/10.5194/npg-2023-1" @default.
- W4315570245 hasPublicationYear "2023" @default.
- W4315570245 type Work @default.
- W4315570245 citedByCount "0" @default.
- W4315570245 crossrefType "posted-content" @default.
- W4315570245 hasAuthorship W4315570245A5029404716 @default.
- W4315570245 hasAuthorship W4315570245A5044070342 @default.
- W4315570245 hasAuthorship W4315570245A5055745873 @default.
- W4315570245 hasAuthorship W4315570245A5062003303 @default.
- W4315570245 hasAuthorship W4315570245A5062555136 @default.
- W4315570245 hasBestOaLocation W43155702451 @default.
- W4315570245 hasConcept C119898033 @default.
- W4315570245 hasConcept C121332964 @default.
- W4315570245 hasConcept C121864883 @default.
- W4315570245 hasConcept C127413603 @default.
- W4315570245 hasConcept C131584629 @default.
- W4315570245 hasConcept C153294291 @default.
- W4315570245 hasConcept C154945302 @default.
- W4315570245 hasConcept C157286648 @default.
- W4315570245 hasConcept C206833254 @default.
- W4315570245 hasConcept C24552861 @default.
- W4315570245 hasConcept C39432304 @default.
- W4315570245 hasConcept C41008148 @default.
- W4315570245 hasConcept C78519656 @default.
- W4315570245 hasConcept C79334102 @default.
- W4315570245 hasConceptScore W4315570245C119898033 @default.
- W4315570245 hasConceptScore W4315570245C121332964 @default.
- W4315570245 hasConceptScore W4315570245C121864883 @default.
- W4315570245 hasConceptScore W4315570245C127413603 @default.
- W4315570245 hasConceptScore W4315570245C131584629 @default.
- W4315570245 hasConceptScore W4315570245C153294291 @default.
- W4315570245 hasConceptScore W4315570245C154945302 @default.
- W4315570245 hasConceptScore W4315570245C157286648 @default.
- W4315570245 hasConceptScore W4315570245C206833254 @default.
- W4315570245 hasConceptScore W4315570245C24552861 @default.
- W4315570245 hasConceptScore W4315570245C39432304 @default.
- W4315570245 hasConceptScore W4315570245C41008148 @default.
- W4315570245 hasConceptScore W4315570245C78519656 @default.
- W4315570245 hasConceptScore W4315570245C79334102 @default.
- W4315570245 hasFunder F4320321026 @default.
- W4315570245 hasFunder F4320334116 @default.
- W4315570245 hasLocation W43155702451 @default.
- W4315570245 hasOpenAccess W4315570245 @default.
- W4315570245 hasPrimaryLocation W43155702451 @default.
- W4315570245 hasRelatedWork W2050470210 @default.
- W4315570245 hasRelatedWork W2101981609 @default.
- W4315570245 hasRelatedWork W2121296646 @default.
- W4315570245 hasRelatedWork W2182570291 @default.
- W4315570245 hasRelatedWork W2240479891 @default.
- W4315570245 hasRelatedWork W2382247324 @default.
- W4315570245 hasRelatedWork W2467481536 @default.
- W4315570245 hasRelatedWork W2592766532 @default.
- W4315570245 hasRelatedWork W2597202463 @default.
- W4315570245 hasRelatedWork W2525014937 @default.
- W4315570245 isParatext "false" @default.
- W4315570245 isRetracted "false" @default.
- W4315570245 workType "article" @default.