Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315574023> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4315574023 abstract "Abstract Background : Apparent Diffusion Coefficient (ADC) of Magnetic Resonance Imaging (MRI) is an indispensable imaging technique in clinical neuroimaging that quantitatively assesses the diffusivity of water molecules within tissues using Diffusion-weighted imaging (DWI). This study focuses on developing a robust Machine Learning (ML) model to predict the aggressiveness of gliomas according to World Health Organization (WHO) grading by analyzing patients’ demographics, higher-order moments, and Grey Level Co-occurrence Matrix (GLCM) texture features of ADC. Methods : A population of 722 labeled MRI-ADC brain image slices from 88 human subjects was selected, where gliomas are labeled as glioblastoma multiforme (WHO-IV), high-grade glioma (WHO-III), and low-grade glioma (WHO I-II). Images were acquired using 3T-MR systems and a region of interest (ROI) was delineated over tumor areas. Skewness, kurtosis, and statistical texture features of GLCM (mean, variance, energy, entropy, contrast, homogeneity, correlation, prominence, and shade) were calculated using ADC values within ROI. The ANOVA f-test was utilized to select the best features to train an ML model. The data set was split into training (70%) and testing (30%) sets. The train set was fed into several ML algorithms and selected most promising ML algorithm using K-fold cross-validation. The hyper-parameters of the selected algorithm were optimized using random grid search technique. Finally, the performance of the developed model was assessed by calculating accuracy, precision, recall, and F1 values reported for the test set. Results : According to the ANOVA f-test, three attributes; patient gender (1.48), GLCM energy (9.48), and correlation (13.86) that performed minimum scores were excluded from the dataset. Among the tested algorithms, the random forest classifier(0.8772±0.0237) performed the highest score and selected to build the ML model which was able to predict tumor categories with an accuracy of 88.14% over the test set. Conclusion: The study concludes that the developed ML model using the above features except for patient gender, GLCM energy, and correlation, has high prediction accuracy in glioma grading. Therefore, the outcomes of this study enable to development of advanced tumor classification applications that assist in the decision-making process in a real-time clinical environment." @default.
- W4315574023 created "2023-01-11" @default.
- W4315574023 creator A5012655790 @default.
- W4315574023 creator A5040863927 @default.
- W4315574023 creator A5041064018 @default.
- W4315574023 creator A5050474434 @default.
- W4315574023 creator A5055515696 @default.
- W4315574023 creator A5055856596 @default.
- W4315574023 creator A5058198811 @default.
- W4315574023 creator A5085523573 @default.
- W4315574023 creator A5089712816 @default.
- W4315574023 date "2023-01-11" @default.
- W4315574023 modified "2023-09-27" @default.
- W4315574023 title "Texture Feature Analysis of MRI-ADC Images to Differentiate Glioma Grades Using Machine Learning Techniques." @default.
- W4315574023 doi "https://doi.org/10.21203/rs.3.rs-2193959/v2" @default.
- W4315574023 hasPublicationYear "2023" @default.
- W4315574023 type Work @default.
- W4315574023 citedByCount "0" @default.
- W4315574023 crossrefType "posted-content" @default.
- W4315574023 hasAuthorship W4315574023A5012655790 @default.
- W4315574023 hasAuthorship W4315574023A5040863927 @default.
- W4315574023 hasAuthorship W4315574023A5041064018 @default.
- W4315574023 hasAuthorship W4315574023A5050474434 @default.
- W4315574023 hasAuthorship W4315574023A5055515696 @default.
- W4315574023 hasAuthorship W4315574023A5055856596 @default.
- W4315574023 hasAuthorship W4315574023A5058198811 @default.
- W4315574023 hasAuthorship W4315574023A5085523573 @default.
- W4315574023 hasAuthorship W4315574023A5089712816 @default.
- W4315574023 hasBestOaLocation W43155740231 @default.
- W4315574023 hasConcept C105795698 @default.
- W4315574023 hasConcept C122342681 @default.
- W4315574023 hasConcept C126838900 @default.
- W4315574023 hasConcept C143409427 @default.
- W4315574023 hasConcept C153180895 @default.
- W4315574023 hasConcept C154945302 @default.
- W4315574023 hasConcept C166963901 @default.
- W4315574023 hasConcept C169258074 @default.
- W4315574023 hasConcept C19609008 @default.
- W4315574023 hasConcept C2778227246 @default.
- W4315574023 hasConcept C33923547 @default.
- W4315574023 hasConcept C41008148 @default.
- W4315574023 hasConcept C502942594 @default.
- W4315574023 hasConcept C70816921 @default.
- W4315574023 hasConcept C71924100 @default.
- W4315574023 hasConceptScore W4315574023C105795698 @default.
- W4315574023 hasConceptScore W4315574023C122342681 @default.
- W4315574023 hasConceptScore W4315574023C126838900 @default.
- W4315574023 hasConceptScore W4315574023C143409427 @default.
- W4315574023 hasConceptScore W4315574023C153180895 @default.
- W4315574023 hasConceptScore W4315574023C154945302 @default.
- W4315574023 hasConceptScore W4315574023C166963901 @default.
- W4315574023 hasConceptScore W4315574023C169258074 @default.
- W4315574023 hasConceptScore W4315574023C19609008 @default.
- W4315574023 hasConceptScore W4315574023C2778227246 @default.
- W4315574023 hasConceptScore W4315574023C33923547 @default.
- W4315574023 hasConceptScore W4315574023C41008148 @default.
- W4315574023 hasConceptScore W4315574023C502942594 @default.
- W4315574023 hasConceptScore W4315574023C70816921 @default.
- W4315574023 hasConceptScore W4315574023C71924100 @default.
- W4315574023 hasLocation W43155740231 @default.
- W4315574023 hasOpenAccess W4315574023 @default.
- W4315574023 hasPrimaryLocation W43155740231 @default.
- W4315574023 hasRelatedWork W1971111402 @default.
- W4315574023 hasRelatedWork W2033000528 @default.
- W4315574023 hasRelatedWork W2379871673 @default.
- W4315574023 hasRelatedWork W2756233264 @default.
- W4315574023 hasRelatedWork W2904039193 @default.
- W4315574023 hasRelatedWork W2908956776 @default.
- W4315574023 hasRelatedWork W2957754238 @default.
- W4315574023 hasRelatedWork W2964383635 @default.
- W4315574023 hasRelatedWork W2980597279 @default.
- W4315574023 hasRelatedWork W4242609709 @default.
- W4315574023 isParatext "false" @default.
- W4315574023 isRetracted "false" @default.
- W4315574023 workType "article" @default.