Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315606680> ?p ?o ?g. }
- W4315606680 abstract "Abstract Background Cardiogenic shock (CS) is a complex state with many underlying causes and associated outcomes. It is still difficult to differentiate between various CS phenotypes. We investigated if the CS phenotypes with distinctive clinical profiles and prognoses might be found using the machine learning (ML) consensus clustering approach. Methods The current study included patients who were diagnosed with CS at the time of admission from the electronic ICU (eICU) Collaborative Research Database. Among 21,925 patients with CS, an unsupervised ML consensus clustering analysis was conducted. The optimal number of clusters was identified by means of the consensus matrix (CM) heat map, cumulative distribution function (CDF), cluster-consensus plots, and the proportion of ambiguously clustered pairs (PAC) analysis. We calculated the standardized mean difference (SMD) of each variable and used the cutoff of ± 0.3 to identify each cluster’s key features. We examined the relationship between the phenotypes and several clinical endpoints utilizing logistic regression (LR) analysis. Results The consensus cluster analysis identified two clusters (Cluster 1: n = 9,848; Cluster 2: n = 12,077). The key features of patients in Cluster 1, compared with Cluster 2, included: lower blood pressure, lower eGFR (estimated glomerular filtration rate), higher BUN (blood urea nitrogen), higher creatinine, lower albumin, higher potassium, lower bicarbonate, lower red blood cell (RBC), higher red blood cell distribution width (RDW), higher SOFA score, higher APS III score, and higher APACHE IV score on admission. The results of LR analysis showed that the Cluster 2 was associated with lower in-hospital mortality (odds ratio [OR]: 0.374; 95% confidence interval [CI]: 0.347–0.402; P < 0.001), ICU mortality (OR: 0.349; 95% CI: 0.318–0.382; P < 0.001), and the incidence of acute kidney injury (AKI) after admission (OR: 0.478; 95% CI: 0.452–0.505; P < 0.001). Conclusions ML consensus clustering analysis synthesized the pattern of clinical and laboratory data to reveal distinct CS phenotypes with different clinical outcomes." @default.
- W4315606680 created "2023-01-12" @default.
- W4315606680 creator A5012278873 @default.
- W4315606680 creator A5016410409 @default.
- W4315606680 creator A5032401991 @default.
- W4315606680 creator A5044761368 @default.
- W4315606680 creator A5049816813 @default.
- W4315606680 creator A5065133130 @default.
- W4315606680 creator A5074339191 @default.
- W4315606680 creator A5089559746 @default.
- W4315606680 date "2023-01-11" @default.
- W4315606680 modified "2023-09-22" @default.
- W4315606680 title "Identification of Distinct Clinical Phenotypes of Cardiogenic Shock Using Machine Learning Consensus Clustering Approach" @default.
- W4315606680 cites W1979900721 @default.
- W4315606680 cites W2000566182 @default.
- W4315606680 cites W2003500862 @default.
- W4315606680 cites W2025303952 @default.
- W4315606680 cites W2041031177 @default.
- W4315606680 cites W2071080933 @default.
- W4315606680 cites W2073742622 @default.
- W4315606680 cites W2085940374 @default.
- W4315606680 cites W2113444747 @default.
- W4315606680 cites W2134843796 @default.
- W4315606680 cites W2140095253 @default.
- W4315606680 cites W2213812049 @default.
- W4315606680 cites W2607178318 @default.
- W4315606680 cites W2617110182 @default.
- W4315606680 cites W2732699012 @default.
- W4315606680 cites W2803621368 @default.
- W4315606680 cites W2888528836 @default.
- W4315606680 cites W2888679364 @default.
- W4315606680 cites W2891400669 @default.
- W4315606680 cites W2955729578 @default.
- W4315606680 cites W2965009907 @default.
- W4315606680 cites W2973689529 @default.
- W4315606680 cites W3042498640 @default.
- W4315606680 cites W3048587623 @default.
- W4315606680 cites W3090110613 @default.
- W4315606680 cites W3094108931 @default.
- W4315606680 cites W3096817080 @default.
- W4315606680 cites W3134301781 @default.
- W4315606680 cites W3180782340 @default.
- W4315606680 cites W3202502518 @default.
- W4315606680 cites W3203362121 @default.
- W4315606680 cites W3211188778 @default.
- W4315606680 cites W4210520398 @default.
- W4315606680 cites W4293860347 @default.
- W4315606680 doi "https://doi.org/10.21203/rs.3.rs-1587034/v3" @default.
- W4315606680 hasPublicationYear "2023" @default.
- W4315606680 type Work @default.
- W4315606680 citedByCount "0" @default.
- W4315606680 crossrefType "posted-content" @default.
- W4315606680 hasAuthorship W4315606680A5012278873 @default.
- W4315606680 hasAuthorship W4315606680A5016410409 @default.
- W4315606680 hasAuthorship W4315606680A5032401991 @default.
- W4315606680 hasAuthorship W4315606680A5044761368 @default.
- W4315606680 hasAuthorship W4315606680A5049816813 @default.
- W4315606680 hasAuthorship W4315606680A5065133130 @default.
- W4315606680 hasAuthorship W4315606680A5074339191 @default.
- W4315606680 hasAuthorship W4315606680A5089559746 @default.
- W4315606680 hasBestOaLocation W43156066801 @default.
- W4315606680 hasConcept C105795698 @default.
- W4315606680 hasConcept C126322002 @default.
- W4315606680 hasConcept C151956035 @default.
- W4315606680 hasConcept C156957248 @default.
- W4315606680 hasConcept C159641895 @default.
- W4315606680 hasConcept C164866538 @default.
- W4315606680 hasConcept C199360897 @default.
- W4315606680 hasConcept C2778176769 @default.
- W4315606680 hasConcept C2780306776 @default.
- W4315606680 hasConcept C33923547 @default.
- W4315606680 hasConcept C41008148 @default.
- W4315606680 hasConcept C71924100 @default.
- W4315606680 hasConcept C73555534 @default.
- W4315606680 hasConceptScore W4315606680C105795698 @default.
- W4315606680 hasConceptScore W4315606680C126322002 @default.
- W4315606680 hasConceptScore W4315606680C151956035 @default.
- W4315606680 hasConceptScore W4315606680C156957248 @default.
- W4315606680 hasConceptScore W4315606680C159641895 @default.
- W4315606680 hasConceptScore W4315606680C164866538 @default.
- W4315606680 hasConceptScore W4315606680C199360897 @default.
- W4315606680 hasConceptScore W4315606680C2778176769 @default.
- W4315606680 hasConceptScore W4315606680C2780306776 @default.
- W4315606680 hasConceptScore W4315606680C33923547 @default.
- W4315606680 hasConceptScore W4315606680C41008148 @default.
- W4315606680 hasConceptScore W4315606680C71924100 @default.
- W4315606680 hasConceptScore W4315606680C73555534 @default.
- W4315606680 hasLocation W43156066801 @default.
- W4315606680 hasOpenAccess W4315606680 @default.
- W4315606680 hasPrimaryLocation W43156066801 @default.
- W4315606680 hasRelatedWork W2145668639 @default.
- W4315606680 hasRelatedWork W2183778696 @default.
- W4315606680 hasRelatedWork W2352486506 @default.
- W4315606680 hasRelatedWork W2364724814 @default.
- W4315606680 hasRelatedWork W2376308676 @default.
- W4315606680 hasRelatedWork W2415589233 @default.
- W4315606680 hasRelatedWork W2508432568 @default.
- W4315606680 hasRelatedWork W2923781889 @default.
- W4315606680 hasRelatedWork W3185971308 @default.
- W4315606680 hasRelatedWork W3201413063 @default.