Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315607782> ?p ?o ?g. }
- W4315607782 endingPage "216" @default.
- W4315607782 startingPage "200" @default.
- W4315607782 abstract "Automatic recognition of facial images showing erotic expressions can help to understand our social interaction and to detect non-appropriate images even when there is no nakedness present in them. This paper contemplates, for the first time, to exploit facial cues applied to automatic Sexual Facial Expression Recognition (SFER). With this goal, we introduce a new dataset named Sexual Expression and Activity Faces (SEA-Faces-30k) for SFER, which contains 30k manually labeled images under three categories: erotic, suggestive-erotic, and non-erotic. Deep Convolutional Neural Networks require large-scale annotated image datasets with diversity and variations to be properly trained. Unfortunately, gathering such a massive amount of data is not feasible in this area. Therefore, we present a new semi-supervised GAN framework named Triple-BigGAN, which learns a generative model and a classifier simultaneously. It learns both tasks in an end-to-end fashion while using unlabeled or partially labeled data. The Triple-BigGAN framework shows promising classification performance for the SFER task (i.e., 93.59%) and other five benchmark datasets, i.e., FER-2013, CIFAR-10, Expression in-the-Wild (ExpW), Modified National Institute of Standards and Technology database (MNIST), and Street View House Numbers (SVHN). Next, we evaluated the quality of samples generated by Triple-BigGAN with a resolution of 256×256 pixels using Inception Score (IS) and Frechet Inception Distance (FID). Our approach obtained the best FID (i.e., 19.94%) and IS (i.e., 97.98%) scores on the SEA-Faces-30k dataset. Further, we empirically demonstrated that synthetic erotic face images generated by Triple-BigGAN could also help in improving the classification performance of deep supervised networks." @default.
- W4315607782 created "2023-01-12" @default.
- W4315607782 creator A5001440837 @default.
- W4315607782 creator A5016354357 @default.
- W4315607782 creator A5020546469 @default.
- W4315607782 creator A5034818449 @default.
- W4315607782 date "2023-04-01" @default.
- W4315607782 modified "2023-10-18" @default.
- W4315607782 title "Triple-BigGAN: Semi-supervised generative adversarial networks for image synthesis and classification on sexual facial expression recognition" @default.
- W4315607782 cites W1519333772 @default.
- W4315607782 cites W1989652289 @default.
- W4315607782 cites W2003238582 @default.
- W4315607782 cites W2103943262 @default.
- W4315607782 cites W2112796928 @default.
- W4315607782 cites W2124386111 @default.
- W4315607782 cites W2145310492 @default.
- W4315607782 cites W2161634108 @default.
- W4315607782 cites W2194775991 @default.
- W4315607782 cites W2246249023 @default.
- W4315607782 cites W2314479002 @default.
- W4315607782 cites W2436394355 @default.
- W4315607782 cites W2730601341 @default.
- W4315607782 cites W2738672149 @default.
- W4315607782 cites W2745497104 @default.
- W4315607782 cites W2754447548 @default.
- W4315607782 cites W2798553619 @default.
- W4315607782 cites W2883861033 @default.
- W4315607782 cites W2942109599 @default.
- W4315607782 cites W2944523338 @default.
- W4315607782 cites W2948139120 @default.
- W4315607782 cites W2953843303 @default.
- W4315607782 cites W2962770929 @default.
- W4315607782 cites W2963073614 @default.
- W4315607782 cites W2963092169 @default.
- W4315607782 cites W2963363102 @default.
- W4315607782 cites W2963767194 @default.
- W4315607782 cites W2964285681 @default.
- W4315607782 cites W2964347177 @default.
- W4315607782 cites W2993640112 @default.
- W4315607782 cites W2995813858 @default.
- W4315607782 cites W2997336602 @default.
- W4315607782 cites W3013160594 @default.
- W4315607782 cites W3035550118 @default.
- W4315607782 cites W3082932313 @default.
- W4315607782 cites W3093327233 @default.
- W4315607782 cites W3099206234 @default.
- W4315607782 cites W3099220769 @default.
- W4315607782 cites W3119213473 @default.
- W4315607782 cites W3134941324 @default.
- W4315607782 cites W3166789519 @default.
- W4315607782 cites W3175849793 @default.
- W4315607782 cites W4214934944 @default.
- W4315607782 cites W4226487943 @default.
- W4315607782 cites W4239510810 @default.
- W4315607782 doi "https://doi.org/10.1016/j.neucom.2023.01.027" @default.
- W4315607782 hasPublicationYear "2023" @default.
- W4315607782 type Work @default.
- W4315607782 citedByCount "2" @default.
- W4315607782 countsByYear W43156077822023 @default.
- W4315607782 crossrefType "journal-article" @default.
- W4315607782 hasAuthorship W4315607782A5001440837 @default.
- W4315607782 hasAuthorship W4315607782A5016354357 @default.
- W4315607782 hasAuthorship W4315607782A5020546469 @default.
- W4315607782 hasAuthorship W4315607782A5034818449 @default.
- W4315607782 hasBestOaLocation W43156077822 @default.
- W4315607782 hasConcept C108583219 @default.
- W4315607782 hasConcept C119857082 @default.
- W4315607782 hasConcept C13280743 @default.
- W4315607782 hasConcept C153180895 @default.
- W4315607782 hasConcept C154945302 @default.
- W4315607782 hasConcept C162324750 @default.
- W4315607782 hasConcept C185798385 @default.
- W4315607782 hasConcept C187736073 @default.
- W4315607782 hasConcept C190502265 @default.
- W4315607782 hasConcept C195704467 @default.
- W4315607782 hasConcept C199360897 @default.
- W4315607782 hasConcept C205649164 @default.
- W4315607782 hasConcept C2780451532 @default.
- W4315607782 hasConcept C41008148 @default.
- W4315607782 hasConcept C81363708 @default.
- W4315607782 hasConcept C90559484 @default.
- W4315607782 hasConcept C95623464 @default.
- W4315607782 hasConceptScore W4315607782C108583219 @default.
- W4315607782 hasConceptScore W4315607782C119857082 @default.
- W4315607782 hasConceptScore W4315607782C13280743 @default.
- W4315607782 hasConceptScore W4315607782C153180895 @default.
- W4315607782 hasConceptScore W4315607782C154945302 @default.
- W4315607782 hasConceptScore W4315607782C162324750 @default.
- W4315607782 hasConceptScore W4315607782C185798385 @default.
- W4315607782 hasConceptScore W4315607782C187736073 @default.
- W4315607782 hasConceptScore W4315607782C190502265 @default.
- W4315607782 hasConceptScore W4315607782C195704467 @default.
- W4315607782 hasConceptScore W4315607782C199360897 @default.
- W4315607782 hasConceptScore W4315607782C205649164 @default.
- W4315607782 hasConceptScore W4315607782C2780451532 @default.
- W4315607782 hasConceptScore W4315607782C41008148 @default.
- W4315607782 hasConceptScore W4315607782C81363708 @default.
- W4315607782 hasConceptScore W4315607782C90559484 @default.