Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315629042> ?p ?o ?g. }
- W4315629042 abstract "Abstract The ability to individually predict disease course of major depressive disorder (MDD) is essential for optimal treatment planning. Here, we use a data-driven machine learning approach to assess the predictive value of different sets of biological data (whole-blood proteomics, lipid-metabolomics, transcriptomics, genetics), both separately and added to clinical baseline variables, for the longitudinal prediction of 2-year MDD chronicity (defined as presence of MDD diagnosis after 2 years) at the individual subject level. Prediction models were trained and cross-validated in a sample of 643 patients with current MDD (2-year chronicity n = 318) and subsequently tested for performance in 161 MDD individuals (2-year chronicity n = 79). Proteomics data showed best unimodal data predictions (AUROC = 0.68). Adding proteomic to clinical data at baseline significantly improved 2-year MDD chronicity predictions (AUROC = 0.63 vs AUROC = 0.78, p = 0.013), while the addition of other -omics data to clinical data did not yield significantly increased model performance. SHAP and enrichment analysis revealed proteomic analytes involved in inflammatory response and lipid metabolism, with fibrinogen levels showing the highest variable importance, followed by symptom severity. Machine learning models outperformed psychiatrists’ ability to predict two-year chronicity (balanced accuracy = 71% vs 55%). This study showed the added predictive value of combining proteomic, but not other -omic data, with clinical data. Adding other -omic data to proteomics did not further improve predictions. Our results reveal a novel multimodal signature of MDD chronicity that shows clinical potential for individual MDD disease course predictions from baseline measurements." @default.
- W4315629042 created "2023-01-12" @default.
- W4315629042 creator A5008602701 @default.
- W4315629042 creator A5011355042 @default.
- W4315629042 creator A5015624790 @default.
- W4315629042 creator A5018495631 @default.
- W4315629042 creator A5032982998 @default.
- W4315629042 creator A5041513555 @default.
- W4315629042 creator A5045828654 @default.
- W4315629042 creator A5051193242 @default.
- W4315629042 creator A5062180220 @default.
- W4315629042 creator A5079874250 @default.
- W4315629042 date "2023-01-11" @default.
- W4315629042 modified "2023-10-16" @default.
- W4315629042 title "Multimodal Data Integration Advances Longitudinal Prediction of the Naturalistic Course of Depression and Reveals a Multimodal Signature of Disease Chronicity" @default.
- W4315629042 cites W1519075624 @default.
- W4315629042 cites W1595020087 @default.
- W4315629042 cites W1974388484 @default.
- W4315629042 cites W1979450493 @default.
- W4315629042 cites W1998392635 @default.
- W4315629042 cites W1999332376 @default.
- W4315629042 cites W2000014323 @default.
- W4315629042 cites W2004980603 @default.
- W4315629042 cites W2007015427 @default.
- W4315629042 cites W2104670497 @default.
- W4315629042 cites W2107411820 @default.
- W4315629042 cites W2114334028 @default.
- W4315629042 cites W2124084192 @default.
- W4315629042 cites W2127124395 @default.
- W4315629042 cites W2144014112 @default.
- W4315629042 cites W2148132316 @default.
- W4315629042 cites W2155568298 @default.
- W4315629042 cites W2168729696 @default.
- W4315629042 cites W2169795969 @default.
- W4315629042 cites W2768083064 @default.
- W4315629042 cites W2806258855 @default.
- W4315629042 cites W2893799782 @default.
- W4315629042 cites W2900054827 @default.
- W4315629042 cites W2928665623 @default.
- W4315629042 cites W2955079055 @default.
- W4315629042 cites W2963389298 @default.
- W4315629042 cites W2970939804 @default.
- W4315629042 cites W2971573347 @default.
- W4315629042 cites W2980328141 @default.
- W4315629042 cites W2990091959 @default.
- W4315629042 cites W2999615587 @default.
- W4315629042 cites W3012040770 @default.
- W4315629042 cites W3021228021 @default.
- W4315629042 cites W3036580760 @default.
- W4315629042 cites W3042578835 @default.
- W4315629042 cites W3082275527 @default.
- W4315629042 cites W3106983564 @default.
- W4315629042 cites W3120767393 @default.
- W4315629042 cites W3125192537 @default.
- W4315629042 cites W3155717344 @default.
- W4315629042 cites W3162469107 @default.
- W4315629042 cites W3187043744 @default.
- W4315629042 cites W3202943151 @default.
- W4315629042 cites W3205128576 @default.
- W4315629042 cites W3205594709 @default.
- W4315629042 cites W4200359255 @default.
- W4315629042 cites W4225274087 @default.
- W4315629042 cites W4230166793 @default.
- W4315629042 cites W4247665917 @default.
- W4315629042 cites W4283645969 @default.
- W4315629042 cites W4286489697 @default.
- W4315629042 cites W4294214983 @default.
- W4315629042 cites W4295951577 @default.
- W4315629042 cites W870090960 @default.
- W4315629042 doi "https://doi.org/10.1101/2023.01.10.523383" @default.
- W4315629042 hasPublicationYear "2023" @default.
- W4315629042 type Work @default.
- W4315629042 citedByCount "0" @default.
- W4315629042 crossrefType "posted-content" @default.
- W4315629042 hasAuthorship W4315629042A5008602701 @default.
- W4315629042 hasAuthorship W4315629042A5011355042 @default.
- W4315629042 hasAuthorship W4315629042A5015624790 @default.
- W4315629042 hasAuthorship W4315629042A5018495631 @default.
- W4315629042 hasAuthorship W4315629042A5032982998 @default.
- W4315629042 hasAuthorship W4315629042A5041513555 @default.
- W4315629042 hasAuthorship W4315629042A5045828654 @default.
- W4315629042 hasAuthorship W4315629042A5051193242 @default.
- W4315629042 hasAuthorship W4315629042A5062180220 @default.
- W4315629042 hasAuthorship W4315629042A5079874250 @default.
- W4315629042 hasBestOaLocation W43156290421 @default.
- W4315629042 hasConcept C104317684 @default.
- W4315629042 hasConcept C119857082 @default.
- W4315629042 hasConcept C126322002 @default.
- W4315629042 hasConcept C139719470 @default.
- W4315629042 hasConcept C148483581 @default.
- W4315629042 hasConcept C154945302 @default.
- W4315629042 hasConcept C157585117 @default.
- W4315629042 hasConcept C162324750 @default.
- W4315629042 hasConcept C2776867660 @default.
- W4315629042 hasConcept C2779134260 @default.
- W4315629042 hasConcept C2779144063 @default.
- W4315629042 hasConcept C2780051608 @default.
- W4315629042 hasConcept C41008148 @default.
- W4315629042 hasConcept C46111723 @default.
- W4315629042 hasConcept C55493867 @default.