Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315641411> ?p ?o ?g. }
- W4315641411 endingPage "611" @default.
- W4315641411 startingPage "599" @default.
- W4315641411 abstract "Abstract On the background of voluntary assurances made by corporations in line with the assertions in their corporate social responsibility disclosures, we investigate which types of firms will obtain an independent certification of their corporate social responsibility disclosures. The study is based on firms listed on the Johannesburg Stock Exchange (JSE) from 2015 to 2019. Deviating from traditional regression approaches, we employ machine learning techniques and show that machine learning techniques obtain superior performance compared to traditional logistic regression at predicting the likelihood of corporate social responsibility assurance by a corporation. The result also shows that large firms with high CSR score, independent board, highly leveraged and belonging to finance industry are the most likely to assure their CSR disclosures." @default.
- W4315641411 created "2023-01-12" @default.
- W4315641411 creator A5013433528 @default.
- W4315641411 creator A5029441843 @default.
- W4315641411 date "2023-01-11" @default.
- W4315641411 modified "2023-10-06" @default.
- W4315641411 title "Which firms opt for corporate social responsibility assurance? A machine learning prediction" @default.
- W4315641411 cites W1696286039 @default.
- W4315641411 cites W1813791524 @default.
- W4315641411 cites W1981189872 @default.
- W4315641411 cites W1997664593 @default.
- W4315641411 cites W2002475444 @default.
- W4315641411 cites W2006760952 @default.
- W4315641411 cites W2049191580 @default.
- W4315641411 cites W2075427888 @default.
- W4315641411 cites W2094863662 @default.
- W4315641411 cites W2096039739 @default.
- W4315641411 cites W2096766070 @default.
- W4315641411 cites W2106439192 @default.
- W4315641411 cites W2112256230 @default.
- W4315641411 cites W2116023696 @default.
- W4315641411 cites W2120199131 @default.
- W4315641411 cites W2135145546 @default.
- W4315641411 cites W2135856626 @default.
- W4315641411 cites W2140956556 @default.
- W4315641411 cites W2196182302 @default.
- W4315641411 cites W2294964718 @default.
- W4315641411 cites W2344804700 @default.
- W4315641411 cites W2586584619 @default.
- W4315641411 cites W2610886376 @default.
- W4315641411 cites W2625845766 @default.
- W4315641411 cites W2748645569 @default.
- W4315641411 cites W2787141294 @default.
- W4315641411 cites W2787894218 @default.
- W4315641411 cites W2791056801 @default.
- W4315641411 cites W2893969967 @default.
- W4315641411 cites W2911964244 @default.
- W4315641411 cites W2915937395 @default.
- W4315641411 cites W2943738292 @default.
- W4315641411 cites W2962727190 @default.
- W4315641411 cites W2989831432 @default.
- W4315641411 cites W2999304503 @default.
- W4315641411 cites W3031557067 @default.
- W4315641411 cites W3049032936 @default.
- W4315641411 cites W3112808112 @default.
- W4315641411 cites W3122352666 @default.
- W4315641411 cites W3122837089 @default.
- W4315641411 cites W3122859634 @default.
- W4315641411 cites W3122866873 @default.
- W4315641411 cites W3124536214 @default.
- W4315641411 cites W3124989794 @default.
- W4315641411 cites W3125170781 @default.
- W4315641411 cites W3125654778 @default.
- W4315641411 cites W3130438241 @default.
- W4315641411 cites W3140995767 @default.
- W4315641411 cites W3156129297 @default.
- W4315641411 cites W3162990355 @default.
- W4315641411 cites W3169452552 @default.
- W4315641411 cites W3204504151 @default.
- W4315641411 cites W4205539948 @default.
- W4315641411 cites W4213325316 @default.
- W4315641411 cites W4248292788 @default.
- W4315641411 cites W4292671038 @default.
- W4315641411 doi "https://doi.org/10.1111/beer.12517" @default.
- W4315641411 hasPublicationYear "2023" @default.
- W4315641411 type Work @default.
- W4315641411 citedByCount "1" @default.
- W4315641411 countsByYear W43156414112023 @default.
- W4315641411 crossrefType "journal-article" @default.
- W4315641411 hasAuthorship W4315641411A5013433528 @default.
- W4315641411 hasAuthorship W4315641411A5029441843 @default.
- W4315641411 hasBestOaLocation W43156414111 @default.
- W4315641411 hasConcept C10138342 @default.
- W4315641411 hasConcept C119857082 @default.
- W4315641411 hasConcept C121955636 @default.
- W4315641411 hasConcept C141261163 @default.
- W4315641411 hasConcept C144133560 @default.
- W4315641411 hasConcept C147598955 @default.
- W4315641411 hasConcept C151956035 @default.
- W4315641411 hasConcept C162324750 @default.
- W4315641411 hasConcept C17744445 @default.
- W4315641411 hasConcept C187736073 @default.
- W4315641411 hasConcept C200870193 @default.
- W4315641411 hasConcept C2778348171 @default.
- W4315641411 hasConcept C39549134 @default.
- W4315641411 hasConcept C41008148 @default.
- W4315641411 hasConcept C46304622 @default.
- W4315641411 hasConceptScore W4315641411C10138342 @default.
- W4315641411 hasConceptScore W4315641411C119857082 @default.
- W4315641411 hasConceptScore W4315641411C121955636 @default.
- W4315641411 hasConceptScore W4315641411C141261163 @default.
- W4315641411 hasConceptScore W4315641411C144133560 @default.
- W4315641411 hasConceptScore W4315641411C147598955 @default.
- W4315641411 hasConceptScore W4315641411C151956035 @default.
- W4315641411 hasConceptScore W4315641411C162324750 @default.
- W4315641411 hasConceptScore W4315641411C17744445 @default.
- W4315641411 hasConceptScore W4315641411C187736073 @default.
- W4315641411 hasConceptScore W4315641411C200870193 @default.