Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315645265> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4315645265 abstract "Summary This study proposes a feature fusion one‐dimensional convolutional neural network algorithm model with a portable non‐dimensionality reduction attention mechanism to resolve the limitations pertaining to the small training sample capacity of conventional deep learning models, single feature‐extractor size, insufficient feature extraction of the bearing faults, and low recognition rate of the bearing health status under variable loads and strong noise. This model regarded raw vibration signal as input, used the feature fusion module to extract multiscale time information, and the convolution‐pooling alternating layer adaptively overcome the time‐dependent limitations. An adaptive batch normalization was introduced to reduce the divergence in sample distribution between the source and target domains and enhance the model generalization capabilities. Moreover, the non‐dimensionality reduction attention mechanism is a more efficient channel weight distribution algorithm that can enhance the anti‐noise performance of the model. After embedding the non‐dimensionality reduction attention mechanism, the proposed network could enhance the anti‐noise performance of the model through a special channel‐weight learning method. It combined the Softmax classification layer to construct a feature extraction feature classification dual intelligent fault diagnosis algorithm. The experiments were performed on the rolling bearing fault dataset. The results revealed that the method provided a rather high generalization ability and stable anti‐noise ability. Simultaneously, the introduction of t‐SNE dimensionality reduction visualization revealed the strong feature‐extraction ability of the deep network model for large‐volume samples." @default.
- W4315645265 created "2023-01-12" @default.
- W4315645265 creator A5019721244 @default.
- W4315645265 creator A5024738753 @default.
- W4315645265 creator A5025438858 @default.
- W4315645265 date "2023-01-11" @default.
- W4315645265 modified "2023-10-12" @default.
- W4315645265 title "New fusion features convolutional neural network with high generalization ability on rolling bearing fault diagnosis" @default.
- W4315645265 cites W1985716425 @default.
- W4315645265 cites W2003205626 @default.
- W4315645265 cites W2030049536 @default.
- W4315645265 cites W2268875920 @default.
- W4315645265 cites W243674440 @default.
- W4315645265 cites W2461729787 @default.
- W4315645265 cites W2485614840 @default.
- W4315645265 cites W2556345765 @default.
- W4315645265 cites W2584994008 @default.
- W4315645265 cites W2744790985 @default.
- W4315645265 cites W2768753204 @default.
- W4315645265 cites W2786808285 @default.
- W4315645265 cites W2808496542 @default.
- W4315645265 cites W2904278575 @default.
- W4315645265 cites W2915377492 @default.
- W4315645265 cites W2962907896 @default.
- W4315645265 cites W2978956171 @default.
- W4315645265 cites W2998000326 @default.
- W4315645265 cites W3007459273 @default.
- W4315645265 cites W3029678535 @default.
- W4315645265 cites W3043370102 @default.
- W4315645265 cites W3089435010 @default.
- W4315645265 cites W3102116353 @default.
- W4315645265 doi "https://doi.org/10.1002/cpe.7600" @default.
- W4315645265 hasPublicationYear "2023" @default.
- W4315645265 type Work @default.
- W4315645265 citedByCount "1" @default.
- W4315645265 countsByYear W43156452652023 @default.
- W4315645265 crossrefType "journal-article" @default.
- W4315645265 hasAuthorship W4315645265A5019721244 @default.
- W4315645265 hasAuthorship W4315645265A5024738753 @default.
- W4315645265 hasAuthorship W4315645265A5025438858 @default.
- W4315645265 hasConcept C138885662 @default.
- W4315645265 hasConcept C153180895 @default.
- W4315645265 hasConcept C154945302 @default.
- W4315645265 hasConcept C188441871 @default.
- W4315645265 hasConcept C2776401178 @default.
- W4315645265 hasConcept C41008148 @default.
- W4315645265 hasConcept C41895202 @default.
- W4315645265 hasConcept C50644808 @default.
- W4315645265 hasConcept C52622490 @default.
- W4315645265 hasConcept C70518039 @default.
- W4315645265 hasConcept C81363708 @default.
- W4315645265 hasConceptScore W4315645265C138885662 @default.
- W4315645265 hasConceptScore W4315645265C153180895 @default.
- W4315645265 hasConceptScore W4315645265C154945302 @default.
- W4315645265 hasConceptScore W4315645265C188441871 @default.
- W4315645265 hasConceptScore W4315645265C2776401178 @default.
- W4315645265 hasConceptScore W4315645265C41008148 @default.
- W4315645265 hasConceptScore W4315645265C41895202 @default.
- W4315645265 hasConceptScore W4315645265C50644808 @default.
- W4315645265 hasConceptScore W4315645265C52622490 @default.
- W4315645265 hasConceptScore W4315645265C70518039 @default.
- W4315645265 hasConceptScore W4315645265C81363708 @default.
- W4315645265 hasIssue "13" @default.
- W4315645265 hasLocation W43156452651 @default.
- W4315645265 hasOpenAccess W4315645265 @default.
- W4315645265 hasPrimaryLocation W43156452651 @default.
- W4315645265 hasRelatedWork W2899027234 @default.
- W4315645265 hasRelatedWork W2962876041 @default.
- W4315645265 hasRelatedWork W2980176872 @default.
- W4315645265 hasRelatedWork W2997424368 @default.
- W4315645265 hasRelatedWork W3095506574 @default.
- W4315645265 hasRelatedWork W3107204728 @default.
- W4315645265 hasRelatedWork W3190449293 @default.
- W4315645265 hasRelatedWork W4220732972 @default.
- W4315645265 hasRelatedWork W4226420367 @default.
- W4315645265 hasRelatedWork W4287591324 @default.
- W4315645265 hasVolume "35" @default.
- W4315645265 isParatext "false" @default.
- W4315645265 isRetracted "false" @default.
- W4315645265 workType "article" @default.