Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315649916> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4315649916 abstract "Recent years have seen a sharp increase in the development of deep learning and artificial intelligence-based molecular informatics. There has been a growing interest in applying deep learning to several subfields, including the digital transformation of synthetic chemistry, extraction of chemical information from the scientific literature, and AI in natural product-based drug discovery. The application of AI to molecular informatics is still constrained by the fact that most of the data used for training and testing deep learning models are not available as FAIR and open data. As open science practices continue to grow in popularity, initiatives which support FAIR and open data, as well as open-source software, have emerged. It is becoming increasingly important for researchers in the field of molecular informatics to embrace open science and to submit data and software in open repositories. With the advent of open-source deep learning frameworks and cloud computing platforms, academic researchers are now able to deploy and test their own deep learning models with ease. With the development of new and faster hardware for deep learning and the increasing number of initiatives towards digital research data management infrastructures, as well as a culture promoting open data, open source, and open science, AI-driven molecular informatics will continue to grow. This review examines the current state of open data and open algorithms in molecular informatics, as well as ways in which they could be improved in future." @default.
- W4315649916 created "2023-01-12" @default.
- W4315649916 creator A5001536528 @default.
- W4315649916 creator A5002477485 @default.
- W4315649916 creator A5017832889 @default.
- W4315649916 creator A5040194803 @default.
- W4315649916 creator A5089744377 @default.
- W4315649916 date "2023-01-11" @default.
- W4315649916 modified "2023-10-01" @default.
- W4315649916 title "Open data and algorithms for open science in AI-driven molecular informatics" @default.
- W4315649916 doi "https://doi.org/10.26434/chemrxiv-2022-dgcm6-v2" @default.
- W4315649916 hasPublicationYear "2023" @default.
- W4315649916 type Work @default.
- W4315649916 citedByCount "0" @default.
- W4315649916 crossrefType "posted-content" @default.
- W4315649916 hasAuthorship W4315649916A5001536528 @default.
- W4315649916 hasAuthorship W4315649916A5002477485 @default.
- W4315649916 hasAuthorship W4315649916A5017832889 @default.
- W4315649916 hasAuthorship W4315649916A5040194803 @default.
- W4315649916 hasAuthorship W4315649916A5089744377 @default.
- W4315649916 hasBestOaLocation W43156499161 @default.
- W4315649916 hasConcept C108583219 @default.
- W4315649916 hasConcept C111919701 @default.
- W4315649916 hasConcept C119599485 @default.
- W4315649916 hasConcept C121332964 @default.
- W4315649916 hasConcept C124101348 @default.
- W4315649916 hasConcept C127413603 @default.
- W4315649916 hasConcept C1276947 @default.
- W4315649916 hasConcept C136764020 @default.
- W4315649916 hasConcept C154945302 @default.
- W4315649916 hasConcept C191630685 @default.
- W4315649916 hasConcept C2522767166 @default.
- W4315649916 hasConcept C2778149293 @default.
- W4315649916 hasConcept C2778464652 @default.
- W4315649916 hasConcept C2780535194 @default.
- W4315649916 hasConcept C41008148 @default.
- W4315649916 hasConcept C75684735 @default.
- W4315649916 hasConcept C79974875 @default.
- W4315649916 hasConceptScore W4315649916C108583219 @default.
- W4315649916 hasConceptScore W4315649916C111919701 @default.
- W4315649916 hasConceptScore W4315649916C119599485 @default.
- W4315649916 hasConceptScore W4315649916C121332964 @default.
- W4315649916 hasConceptScore W4315649916C124101348 @default.
- W4315649916 hasConceptScore W4315649916C127413603 @default.
- W4315649916 hasConceptScore W4315649916C1276947 @default.
- W4315649916 hasConceptScore W4315649916C136764020 @default.
- W4315649916 hasConceptScore W4315649916C154945302 @default.
- W4315649916 hasConceptScore W4315649916C191630685 @default.
- W4315649916 hasConceptScore W4315649916C2522767166 @default.
- W4315649916 hasConceptScore W4315649916C2778149293 @default.
- W4315649916 hasConceptScore W4315649916C2778464652 @default.
- W4315649916 hasConceptScore W4315649916C2780535194 @default.
- W4315649916 hasConceptScore W4315649916C41008148 @default.
- W4315649916 hasConceptScore W4315649916C75684735 @default.
- W4315649916 hasConceptScore W4315649916C79974875 @default.
- W4315649916 hasFunder F4320320879 @default.
- W4315649916 hasLocation W43156499161 @default.
- W4315649916 hasOpenAccess W4315649916 @default.
- W4315649916 hasPrimaryLocation W43156499161 @default.
- W4315649916 hasRelatedWork W1935138864 @default.
- W4315649916 hasRelatedWork W2149140091 @default.
- W4315649916 hasRelatedWork W218999058 @default.
- W4315649916 hasRelatedWork W2290480557 @default.
- W4315649916 hasRelatedWork W2923144297 @default.
- W4315649916 hasRelatedWork W3049152823 @default.
- W4315649916 hasRelatedWork W4210730450 @default.
- W4315649916 hasRelatedWork W4298211017 @default.
- W4315649916 hasRelatedWork W4315649916 @default.
- W4315649916 hasRelatedWork W4321274994 @default.
- W4315649916 isParatext "false" @default.
- W4315649916 isRetracted "false" @default.
- W4315649916 workType "article" @default.