Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315652208> ?p ?o ?g. }
- W4315652208 endingPage "1115" @default.
- W4315652208 startingPage "1101" @default.
- W4315652208 abstract "In recent years, deep learning techniques have been widely used to diagnose diseases. However, in some tasks, such as the diagnosis of COVID-19 disease, due to insufficient data, the model is not properly trained and as a result, the generalizability of the model decreases. For example, if the model is trained on a CT scan dataset and tested on another CT scan dataset, it predicts near-random results. To address this, data from several different sources can be combined using transfer learning, taking into account the intrinsic and natural differences in existing datasets obtained with different medical imaging tools and approaches. In this paper, to improve the transfer learning technique and better generalizability between multiple data sources, we propose a multi-source adversarial transfer learning model, namely AMTLDC. In AMTLDC, representations are learned that are similar among the sources. In other words, extracted representations are general and not dependent on the particular dataset domain. We apply the AMTLDC to predict Covid-19 from medical images using a convolutional neural network. We show that accuracy can be improved using the AMTLDC framework, and surpass the results of current successful transfer learning approaches. In particular, we show that the AMTLDC works well when using different dataset domains, or when there is insufficient data." @default.
- W4315652208 created "2023-01-12" @default.
- W4315652208 creator A5029217301 @default.
- W4315652208 creator A5074697107 @default.
- W4315652208 creator A5089205977 @default.
- W4315652208 date "2023-01-12" @default.
- W4315652208 modified "2023-10-18" @default.
- W4315652208 title "AMTLDC: a new adversarial multi-source transfer learning framework to diagnosis of COVID-19" @default.
- W4315652208 cites W1986649315 @default.
- W4315652208 cites W2084220915 @default.
- W4315652208 cites W2099707769 @default.
- W4315652208 cites W2183341477 @default.
- W4315652208 cites W2194775991 @default.
- W4315652208 cites W2557738935 @default.
- W4315652208 cites W2560476520 @default.
- W4315652208 cites W2561512519 @default.
- W4315652208 cites W2565684601 @default.
- W4315652208 cites W2580480204 @default.
- W4315652208 cites W2581082771 @default.
- W4315652208 cites W2905483812 @default.
- W4315652208 cites W2915678294 @default.
- W4315652208 cites W3004227146 @default.
- W4315652208 cites W3005798081 @default.
- W4315652208 cites W3005879071 @default.
- W4315652208 cites W3006082171 @default.
- W4315652208 cites W3007497549 @default.
- W4315652208 cites W3011149445 @default.
- W4315652208 cites W3012602559 @default.
- W4315652208 cites W3012751338 @default.
- W4315652208 cites W3013601031 @default.
- W4315652208 cites W3015984951 @default.
- W4315652208 cites W3016490470 @default.
- W4315652208 cites W3016636869 @default.
- W4315652208 cites W3016970897 @default.
- W4315652208 cites W3017403618 @default.
- W4315652208 cites W3017644243 @default.
- W4315652208 cites W3021001507 @default.
- W4315652208 cites W3021040136 @default.
- W4315652208 cites W3023180050 @default.
- W4315652208 cites W3023275409 @default.
- W4315652208 cites W3023594394 @default.
- W4315652208 cites W3024589262 @default.
- W4315652208 cites W3036552116 @default.
- W4315652208 cites W3037538421 @default.
- W4315652208 cites W3040660552 @default.
- W4315652208 cites W3040989605 @default.
- W4315652208 cites W3045460727 @default.
- W4315652208 cites W3048123412 @default.
- W4315652208 cites W3048424015 @default.
- W4315652208 cites W3085306326 @default.
- W4315652208 cites W3086039674 @default.
- W4315652208 cites W3086462707 @default.
- W4315652208 cites W3092624683 @default.
- W4315652208 cites W3104004606 @default.
- W4315652208 cites W3104951425 @default.
- W4315652208 cites W3110006982 @default.
- W4315652208 cites W3115094144 @default.
- W4315652208 cites W3120595226 @default.
- W4315652208 cites W3133191822 @default.
- W4315652208 cites W3135243128 @default.
- W4315652208 cites W3150298593 @default.
- W4315652208 cites W3196257774 @default.
- W4315652208 cites W3206188013 @default.
- W4315652208 cites W3210407768 @default.
- W4315652208 cites W3210628769 @default.
- W4315652208 cites W3217566380 @default.
- W4315652208 cites W4205341929 @default.
- W4315652208 cites W4210992544 @default.
- W4315652208 cites W4232798703 @default.
- W4315652208 cites W4256702816 @default.
- W4315652208 cites W4283811563 @default.
- W4315652208 cites W4285726113 @default.
- W4315652208 cites W4293912903 @default.
- W4315652208 cites W4296182416 @default.
- W4315652208 doi "https://doi.org/10.1007/s12530-023-09484-2" @default.
- W4315652208 hasPublicationYear "2023" @default.
- W4315652208 type Work @default.
- W4315652208 citedByCount "3" @default.
- W4315652208 countsByYear W43156522082023 @default.
- W4315652208 crossrefType "journal-article" @default.
- W4315652208 hasAuthorship W4315652208A5029217301 @default.
- W4315652208 hasAuthorship W4315652208A5074697107 @default.
- W4315652208 hasAuthorship W4315652208A5089205977 @default.
- W4315652208 hasBestOaLocation W43156522081 @default.
- W4315652208 hasConcept C105795698 @default.
- W4315652208 hasConcept C108583219 @default.
- W4315652208 hasConcept C119857082 @default.
- W4315652208 hasConcept C134306372 @default.
- W4315652208 hasConcept C142724271 @default.
- W4315652208 hasConcept C150899416 @default.
- W4315652208 hasConcept C154945302 @default.
- W4315652208 hasConcept C27158222 @default.
- W4315652208 hasConcept C2776145971 @default.
- W4315652208 hasConcept C2779134260 @default.
- W4315652208 hasConcept C3008058167 @default.
- W4315652208 hasConcept C33923547 @default.
- W4315652208 hasConcept C36503486 @default.
- W4315652208 hasConcept C37736160 @default.