Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315694810> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4315694810 abstract "Writing with a finger or a stylus pen on a tablet, especially in the case of signing, has been more and more popular in our ordinary life. The necessity of the analysis of handwriting data acquired online for forensic purposes has also been more and more important. There has been, however, a very small number of research conducted on online handwriting data analysis from the standpoint of forensic document examination. Handwriting classification experiments using the dataset collected both offline and online for forensic purposes were conducted in this paper. Three kinds of handwriting classification experiments using offline data and two kinds of online data respectively were conducted. The classification task was to use handwriting samples from 10 different writers to classify 10 different writers. A convolutional neural network algorithm was used for classification. In the experiments, four kinds of Japanese handwriting samples, which were acquired both online and offline, were combined to be a “signature” of a Japanese person and analyzed. Samples were divided into training samples and test samples and the classification experiments were done. After learning the handwriting features of the 10 writers using the training data, the test samples were classified into 10 writers. Online data used for the classification were pen tip trajectory with pen pressure or with writing speed. A trajectory was painted in three colors (pen pressure condition) or five colors (writing speed condition) like a map. Handwriting classification experiments were done on offline data, pen pressure data and writing speed data using LeNet respectively. The results showed over 95% accuracy in offline and pen pressure conditions. Writing speed data showed a lower accuracy score. The results suggested the availability of online data for forensic handwriting classification." @default.
- W4315694810 created "2023-01-12" @default.
- W4315694810 creator A5018599587 @default.
- W4315694810 date "2022-10-27" @default.
- W4315694810 modified "2023-09-23" @default.
- W4315694810 title "A Preliminary Study on Handwriting Classification Using Motor Information" @default.
- W4315694810 cites W1163666616 @default.
- W4315694810 cites W1948631772 @default.
- W4315694810 cites W2123026107 @default.
- W4315694810 cites W2600715760 @default.
- W4315694810 cites W2614376571 @default.
- W4315694810 cites W2783471871 @default.
- W4315694810 cites W2890688138 @default.
- W4315694810 cites W2911424601 @default.
- W4315694810 cites W2986338272 @default.
- W4315694810 doi "https://doi.org/10.1109/iceet56468.2022.10007266" @default.
- W4315694810 hasPublicationYear "2022" @default.
- W4315694810 type Work @default.
- W4315694810 citedByCount "0" @default.
- W4315694810 crossrefType "proceedings-article" @default.
- W4315694810 hasAuthorship W4315694810A5018599587 @default.
- W4315694810 hasConcept C111919701 @default.
- W4315694810 hasConcept C112640561 @default.
- W4315694810 hasConcept C127413603 @default.
- W4315694810 hasConcept C153180895 @default.
- W4315694810 hasConcept C154945302 @default.
- W4315694810 hasConcept C164086593 @default.
- W4315694810 hasConcept C16910744 @default.
- W4315694810 hasConcept C199360897 @default.
- W4315694810 hasConcept C201995342 @default.
- W4315694810 hasConcept C2779386606 @default.
- W4315694810 hasConcept C2780102126 @default.
- W4315694810 hasConcept C2780451532 @default.
- W4315694810 hasConcept C28490314 @default.
- W4315694810 hasConcept C31972630 @default.
- W4315694810 hasConcept C41008148 @default.
- W4315694810 hasConcept C52622490 @default.
- W4315694810 hasConcept C81363708 @default.
- W4315694810 hasConceptScore W4315694810C111919701 @default.
- W4315694810 hasConceptScore W4315694810C112640561 @default.
- W4315694810 hasConceptScore W4315694810C127413603 @default.
- W4315694810 hasConceptScore W4315694810C153180895 @default.
- W4315694810 hasConceptScore W4315694810C154945302 @default.
- W4315694810 hasConceptScore W4315694810C164086593 @default.
- W4315694810 hasConceptScore W4315694810C16910744 @default.
- W4315694810 hasConceptScore W4315694810C199360897 @default.
- W4315694810 hasConceptScore W4315694810C201995342 @default.
- W4315694810 hasConceptScore W4315694810C2779386606 @default.
- W4315694810 hasConceptScore W4315694810C2780102126 @default.
- W4315694810 hasConceptScore W4315694810C2780451532 @default.
- W4315694810 hasConceptScore W4315694810C28490314 @default.
- W4315694810 hasConceptScore W4315694810C31972630 @default.
- W4315694810 hasConceptScore W4315694810C41008148 @default.
- W4315694810 hasConceptScore W4315694810C52622490 @default.
- W4315694810 hasConceptScore W4315694810C81363708 @default.
- W4315694810 hasLocation W43156948101 @default.
- W4315694810 hasOpenAccess W4315694810 @default.
- W4315694810 hasPrimaryLocation W43156948101 @default.
- W4315694810 hasRelatedWork W1485274656 @default.
- W4315694810 hasRelatedWork W1968969211 @default.
- W4315694810 hasRelatedWork W1995324516 @default.
- W4315694810 hasRelatedWork W2158785961 @default.
- W4315694810 hasRelatedWork W2963891724 @default.
- W4315694810 hasRelatedWork W3093612317 @default.
- W4315694810 hasRelatedWork W4205628281 @default.
- W4315694810 hasRelatedWork W4220954837 @default.
- W4315694810 hasRelatedWork W4242764575 @default.
- W4315694810 hasRelatedWork W4315694810 @default.
- W4315694810 isParatext "false" @default.
- W4315694810 isRetracted "false" @default.
- W4315694810 workType "article" @default.