Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315694994> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4315694994 abstract "Ever-growing digitalization and availability of massive data have revolutionized our world. This abundant digitized data is currently being processed using modern AI techniques for effective and automatic processing for the betterment of humanity. Following this revolution, as the amount of legal data also keeps on increasing due to many verdicts being passed every day, the current study deals with the automatic information mining from this data. These passed verdicts and cases are the primary source of information for judges and lawyers. Hence, there exists a wide margin of research in this domain to better serve the needs of legal stakeholders and the public. Therefore, in this study, Information Extraction is applied to extract potential entities from five hundred reported civil judgments from Lahore High Court, Pakistan. This is being carried out using a variety of algorithms, including statistical sequence labeling techniques (Hidden Markov Models, Maximum Entropy Models, and Conditional Random Fields (CRF)) as well as state-of-the-art deep learning systems (hybrid deep architectures and transformers). In addition, experiments are carried out using two widely used annotation schemes. Experiments resulted in an F1 score of more than 95 percent without using domain-specific features." @default.
- W4315694994 created "2023-01-12" @default.
- W4315694994 creator A5016384161 @default.
- W4315694994 creator A5017170336 @default.
- W4315694994 creator A5069796357 @default.
- W4315694994 creator A5091386550 @default.
- W4315694994 date "2022-10-27" @default.
- W4315694994 modified "2023-09-23" @default.
- W4315694994 title "Civil Data Mining using Machine Learning" @default.
- W4315694994 cites W1518883374 @default.
- W4315694994 cites W2117930227 @default.
- W4315694994 cites W2121204325 @default.
- W4315694994 cites W2893709526 @default.
- W4315694994 cites W2894170875 @default.
- W4315694994 cites W2911489562 @default.
- W4315694994 cites W2931203374 @default.
- W4315694994 cites W2944353865 @default.
- W4315694994 cites W2966087630 @default.
- W4315694994 cites W3204102400 @default.
- W4315694994 cites W817877629 @default.
- W4315694994 doi "https://doi.org/10.1109/iceet56468.2022.10007237" @default.
- W4315694994 hasPublicationYear "2022" @default.
- W4315694994 type Work @default.
- W4315694994 citedByCount "0" @default.
- W4315694994 crossrefType "proceedings-article" @default.
- W4315694994 hasAuthorship W4315694994A5016384161 @default.
- W4315694994 hasAuthorship W4315694994A5017170336 @default.
- W4315694994 hasAuthorship W4315694994A5069796357 @default.
- W4315694994 hasAuthorship W4315694994A5091386550 @default.
- W4315694994 hasConcept C106301342 @default.
- W4315694994 hasConcept C108583219 @default.
- W4315694994 hasConcept C119857082 @default.
- W4315694994 hasConcept C121332964 @default.
- W4315694994 hasConcept C12267149 @default.
- W4315694994 hasConcept C124101348 @default.
- W4315694994 hasConcept C136197465 @default.
- W4315694994 hasConcept C138885662 @default.
- W4315694994 hasConcept C152565575 @default.
- W4315694994 hasConcept C154945302 @default.
- W4315694994 hasConcept C195807954 @default.
- W4315694994 hasConcept C23224414 @default.
- W4315694994 hasConcept C2522767166 @default.
- W4315694994 hasConcept C27206212 @default.
- W4315694994 hasConcept C41008148 @default.
- W4315694994 hasConcept C512654426 @default.
- W4315694994 hasConcept C62520636 @default.
- W4315694994 hasConcept C75684735 @default.
- W4315694994 hasConcept C774472 @default.
- W4315694994 hasConceptScore W4315694994C106301342 @default.
- W4315694994 hasConceptScore W4315694994C108583219 @default.
- W4315694994 hasConceptScore W4315694994C119857082 @default.
- W4315694994 hasConceptScore W4315694994C121332964 @default.
- W4315694994 hasConceptScore W4315694994C12267149 @default.
- W4315694994 hasConceptScore W4315694994C124101348 @default.
- W4315694994 hasConceptScore W4315694994C136197465 @default.
- W4315694994 hasConceptScore W4315694994C138885662 @default.
- W4315694994 hasConceptScore W4315694994C152565575 @default.
- W4315694994 hasConceptScore W4315694994C154945302 @default.
- W4315694994 hasConceptScore W4315694994C195807954 @default.
- W4315694994 hasConceptScore W4315694994C23224414 @default.
- W4315694994 hasConceptScore W4315694994C2522767166 @default.
- W4315694994 hasConceptScore W4315694994C27206212 @default.
- W4315694994 hasConceptScore W4315694994C41008148 @default.
- W4315694994 hasConceptScore W4315694994C512654426 @default.
- W4315694994 hasConceptScore W4315694994C62520636 @default.
- W4315694994 hasConceptScore W4315694994C75684735 @default.
- W4315694994 hasConceptScore W4315694994C774472 @default.
- W4315694994 hasLocation W43156949941 @default.
- W4315694994 hasOpenAccess W4315694994 @default.
- W4315694994 hasPrimaryLocation W43156949941 @default.
- W4315694994 hasRelatedWork W2025775541 @default.
- W4315694994 hasRelatedWork W2787045460 @default.
- W4315694994 hasRelatedWork W2803710604 @default.
- W4315694994 hasRelatedWork W2947903144 @default.
- W4315694994 hasRelatedWork W2995151999 @default.
- W4315694994 hasRelatedWork W2995342906 @default.
- W4315694994 hasRelatedWork W3014300295 @default.
- W4315694994 hasRelatedWork W3136979370 @default.
- W4315694994 hasRelatedWork W4285106639 @default.
- W4315694994 hasRelatedWork W4311106074 @default.
- W4315694994 isParatext "false" @default.
- W4315694994 isRetracted "false" @default.
- W4315694994 workType "article" @default.