Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315695724> ?p ?o ?g. }
- W4315695724 endingPage "140" @default.
- W4315695724 startingPage "130" @default.
- W4315695724 abstract "Today, in the field of science and technology, huge forecasting applications are used by scholars to forecast future values. Nowadays, using estimating the flood forecasting for peak flow discharges is very common for the risk assessment annually by quantitative data collections from different resources. The very famous and longest rivers of Pakistan i.e. Indus River and other rivers too like River Jhelum, River Kabul, and River Chenab are the prime sources of flooding. These rivers are the prime tributaries of the Indus River System. Pakistan's longest river, River Indus, is connected with the seven (7) gauge stations called Dams and barrages, and they are playing a vital role in the generation of electricity and also in irrigation for Pakistan. In this research paper, we calculated the flood risk for the Indus using the streamflow discharges on the daily basis. At present, Adaptive Neuro-Fuzzy Inference System (ANFIS) model is widely used to analyze these hydrological time series data. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) merges the potentiality of Fuzzy Inference Systems (FIS) and Artificial Neural Networks (ANN) to work out problems of different kinds. For this purpose, we used the data for the years from 2002 to 2012 daily (6-months each year) streamflow period. In our analysis, the root means square error (RMSE) shows that the ANFIS model generated more satisfactory results than other models with minimum prediction errors. The ANFIS model is more reliable and has the feasibility of integrating the essence of a fuzzy system into the real world.1–28" @default.
- W4315695724 created "2023-01-12" @default.
- W4315695724 creator A5009502755 @default.
- W4315695724 creator A5070675665 @default.
- W4315695724 creator A5079662266 @default.
- W4315695724 date "2022-07-21" @default.
- W4315695724 modified "2023-09-25" @default.
- W4315695724 title "Comparison of the hydrological time series modeling by the floods in river Indus of Pakistan" @default.
- W4315695724 cites W1498436455 @default.
- W4315695724 cites W1502441705 @default.
- W4315695724 cites W1973676661 @default.
- W4315695724 cites W1974111141 @default.
- W4315695724 cites W1989665358 @default.
- W4315695724 cites W1992176519 @default.
- W4315695724 cites W1996380509 @default.
- W4315695724 cites W2019207321 @default.
- W4315695724 cites W2024520223 @default.
- W4315695724 cites W2029732391 @default.
- W4315695724 cites W2036042126 @default.
- W4315695724 cites W2045803502 @default.
- W4315695724 cites W2046738003 @default.
- W4315695724 cites W2062255227 @default.
- W4315695724 cites W2068833943 @default.
- W4315695724 cites W2079325629 @default.
- W4315695724 cites W2133321814 @default.
- W4315695724 cites W2135984752 @default.
- W4315695724 cites W2159265133 @default.
- W4315695724 cites W2164367293 @default.
- W4315695724 cites W2216403789 @default.
- W4315695724 cites W2904845241 @default.
- W4315695724 cites W2994542659 @default.
- W4315695724 doi "https://doi.org/10.15406/ijh.2022.06.00317" @default.
- W4315695724 hasPublicationYear "2022" @default.
- W4315695724 type Work @default.
- W4315695724 citedByCount "1" @default.
- W4315695724 countsByYear W43156957242022 @default.
- W4315695724 crossrefType "journal-article" @default.
- W4315695724 hasAuthorship W4315695724A5009502755 @default.
- W4315695724 hasAuthorship W4315695724A5070675665 @default.
- W4315695724 hasAuthorship W4315695724A5079662266 @default.
- W4315695724 hasBestOaLocation W43156957241 @default.
- W4315695724 hasConcept C105795698 @default.
- W4315695724 hasConcept C109007969 @default.
- W4315695724 hasConcept C119857082 @default.
- W4315695724 hasConcept C126645576 @default.
- W4315695724 hasConcept C127313418 @default.
- W4315695724 hasConcept C139945424 @default.
- W4315695724 hasConcept C151406439 @default.
- W4315695724 hasConcept C151730666 @default.
- W4315695724 hasConcept C154945302 @default.
- W4315695724 hasConcept C15744967 @default.
- W4315695724 hasConcept C166957645 @default.
- W4315695724 hasConcept C16828302 @default.
- W4315695724 hasConcept C183195422 @default.
- W4315695724 hasConcept C186108316 @default.
- W4315695724 hasConcept C186594467 @default.
- W4315695724 hasConcept C187320778 @default.
- W4315695724 hasConcept C195975749 @default.
- W4315695724 hasConcept C205649164 @default.
- W4315695724 hasConcept C2779276979 @default.
- W4315695724 hasConcept C33923547 @default.
- W4315695724 hasConcept C39432304 @default.
- W4315695724 hasConcept C41008148 @default.
- W4315695724 hasConcept C524765639 @default.
- W4315695724 hasConcept C53739315 @default.
- W4315695724 hasConcept C542102704 @default.
- W4315695724 hasConcept C58166 @default.
- W4315695724 hasConcept C58640448 @default.
- W4315695724 hasConcept C74256435 @default.
- W4315695724 hasConcept C76886044 @default.
- W4315695724 hasConcept C9836676 @default.
- W4315695724 hasConceptScore W4315695724C105795698 @default.
- W4315695724 hasConceptScore W4315695724C109007969 @default.
- W4315695724 hasConceptScore W4315695724C119857082 @default.
- W4315695724 hasConceptScore W4315695724C126645576 @default.
- W4315695724 hasConceptScore W4315695724C127313418 @default.
- W4315695724 hasConceptScore W4315695724C139945424 @default.
- W4315695724 hasConceptScore W4315695724C151406439 @default.
- W4315695724 hasConceptScore W4315695724C151730666 @default.
- W4315695724 hasConceptScore W4315695724C154945302 @default.
- W4315695724 hasConceptScore W4315695724C15744967 @default.
- W4315695724 hasConceptScore W4315695724C166957645 @default.
- W4315695724 hasConceptScore W4315695724C16828302 @default.
- W4315695724 hasConceptScore W4315695724C183195422 @default.
- W4315695724 hasConceptScore W4315695724C186108316 @default.
- W4315695724 hasConceptScore W4315695724C186594467 @default.
- W4315695724 hasConceptScore W4315695724C187320778 @default.
- W4315695724 hasConceptScore W4315695724C195975749 @default.
- W4315695724 hasConceptScore W4315695724C205649164 @default.
- W4315695724 hasConceptScore W4315695724C2779276979 @default.
- W4315695724 hasConceptScore W4315695724C33923547 @default.
- W4315695724 hasConceptScore W4315695724C39432304 @default.
- W4315695724 hasConceptScore W4315695724C41008148 @default.
- W4315695724 hasConceptScore W4315695724C524765639 @default.
- W4315695724 hasConceptScore W4315695724C53739315 @default.
- W4315695724 hasConceptScore W4315695724C542102704 @default.
- W4315695724 hasConceptScore W4315695724C58166 @default.
- W4315695724 hasConceptScore W4315695724C58640448 @default.