Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315697745> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4315697745 endingPage "678" @default.
- W4315697745 startingPage "665" @default.
- W4315697745 abstract "The study is devoted to modeling nonequilibrium vibrational kinetics of carbon dioxide taking into account complex mechanisms of relaxation and intermode energy exchanges. The possibilities of using machine learning methods to improve the performance of numerical simulation of non-equilibrium carbon dioxide flows are studied. Various strategies for increasing the efficiency of the hybrid four-temperature model of CO2 kinetics are considered. The neural network approach proposed by the authors to calculate the rate of vibrational relaxation in each mode turned out to be the most promising. For the problem of spatially homogeneous relaxation, estimates of the error and computational costs of the developed algorithm are carried out, and its high accuracy and efficiency are demonstrated. For the first time, the carbon dioxide flow behind a plane shock wave was simulated in a full state-to-state approximation. A comparison with the results obtained in the framework of the hybrid four-temperature approach is carried out, and the equivalence of the approaches is shown. This makes it possible to recommend developed multitemperature approxima tions as the main tool for solving problems of nonequilibrium kinetics and gas dynamics. The hybrid four-temperature approach using the neural network method for calculating relaxation terms showed the acceleration of numerical simulation in time by more than an order of magnitude, while maintaining accuracy. This technique can be recommended for solving complex multidimensional problems of nonequilibrium gas dynamics, including state-to-state chemical reactions." @default.
- W4315697745 created "2023-01-12" @default.
- W4315697745 creator A5021212001 @default.
- W4315697745 creator A5036968159 @default.
- W4315697745 date "2022-01-01" @default.
- W4315697745 modified "2023-09-27" @default.
- W4315697745 title "Neural network approach in modelling vibrational kinetics of carbon dioxide" @default.
- W4315697745 doi "https://doi.org/10.21638/spbu01.2022.409" @default.
- W4315697745 hasPublicationYear "2022" @default.
- W4315697745 type Work @default.
- W4315697745 citedByCount "0" @default.
- W4315697745 crossrefType "journal-article" @default.
- W4315697745 hasAuthorship W4315697745A5021212001 @default.
- W4315697745 hasAuthorship W4315697745A5036968159 @default.
- W4315697745 hasBestOaLocation W43156977451 @default.
- W4315697745 hasConcept C121332964 @default.
- W4315697745 hasConcept C121864883 @default.
- W4315697745 hasConcept C154945302 @default.
- W4315697745 hasConcept C15744967 @default.
- W4315697745 hasConcept C181500209 @default.
- W4315697745 hasConcept C184779094 @default.
- W4315697745 hasConcept C185592680 @default.
- W4315697745 hasConcept C2776029896 @default.
- W4315697745 hasConcept C41008148 @default.
- W4315697745 hasConcept C44154836 @default.
- W4315697745 hasConcept C50644808 @default.
- W4315697745 hasConcept C74859849 @default.
- W4315697745 hasConcept C77805123 @default.
- W4315697745 hasConcept C84662259 @default.
- W4315697745 hasConcept C97355855 @default.
- W4315697745 hasConceptScore W4315697745C121332964 @default.
- W4315697745 hasConceptScore W4315697745C121864883 @default.
- W4315697745 hasConceptScore W4315697745C154945302 @default.
- W4315697745 hasConceptScore W4315697745C15744967 @default.
- W4315697745 hasConceptScore W4315697745C181500209 @default.
- W4315697745 hasConceptScore W4315697745C184779094 @default.
- W4315697745 hasConceptScore W4315697745C185592680 @default.
- W4315697745 hasConceptScore W4315697745C2776029896 @default.
- W4315697745 hasConceptScore W4315697745C41008148 @default.
- W4315697745 hasConceptScore W4315697745C44154836 @default.
- W4315697745 hasConceptScore W4315697745C50644808 @default.
- W4315697745 hasConceptScore W4315697745C74859849 @default.
- W4315697745 hasConceptScore W4315697745C77805123 @default.
- W4315697745 hasConceptScore W4315697745C84662259 @default.
- W4315697745 hasConceptScore W4315697745C97355855 @default.
- W4315697745 hasIssue "4" @default.
- W4315697745 hasLocation W43156977451 @default.
- W4315697745 hasLocation W43156977452 @default.
- W4315697745 hasOpenAccess W4315697745 @default.
- W4315697745 hasPrimaryLocation W43156977451 @default.
- W4315697745 hasRelatedWork W1964686652 @default.
- W4315697745 hasRelatedWork W2020046326 @default.
- W4315697745 hasRelatedWork W2022144101 @default.
- W4315697745 hasRelatedWork W2025963198 @default.
- W4315697745 hasRelatedWork W2034188687 @default.
- W4315697745 hasRelatedWork W2043249653 @default.
- W4315697745 hasRelatedWork W2062369481 @default.
- W4315697745 hasRelatedWork W2080146699 @default.
- W4315697745 hasRelatedWork W2084709920 @default.
- W4315697745 hasRelatedWork W2100158805 @default.
- W4315697745 hasVolume "9" @default.
- W4315697745 isParatext "false" @default.
- W4315697745 isRetracted "false" @default.
- W4315697745 workType "article" @default.