Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315702438> ?p ?o ?g. }
- W4315702438 endingPage "105" @default.
- W4315702438 startingPage "105" @default.
- W4315702438 abstract "Feature fusion techniques have been proposed and tested for many medical applications to improve diagnostic and classification problems. Specifically, cervical cancer classification can be improved by using such techniques. Feature fusion combines information from different datasets into a single dataset. This dataset contains superior discriminant power that can improve classification accuracy. In this paper, we conduct comparisons among six selected feature fusion techniques to provide the best possible classification accuracy of cervical cancer. The considered techniques are canonical correlation analysis, discriminant correlation analysis, least absolute shrinkage and selection operator, independent component analysis, principal component analysis, and concatenation. We generate ten feature datasets that come from the transfer learning of the most popular pre-trained deep learning models: Alex net, Resnet 18, Resnet 50, Resnet 10, Mobilenet, Shufflenet, Xception, Nasnet, Darknet 19, and VGG Net 16. The main contribution of this paper is to combine these models and then apply them to the six feature fusion techniques to discriminate various classes of cervical cancer. The obtained results are then fed into a support vector machine model to classify four cervical cancer classes (i.e., Negative, HISL, LSIL, and SCC). It has been found that the considered six techniques demand relatively comparable computational complexity when they are run on the same machine. However, the canonical correlation analysis has provided the best performance in classification accuracy among the six considered techniques, at 99.7%. The second-best methods were the independent component analysis, least absolute shrinkage and the selection operator, which were found to have a 98.3% accuracy. On the other hand, the worst-performing technique was the principal component analysis technique, which offered 90% accuracy. Our developed approach of analysis can be applied to other medical diagnosis classification problems, which may demand the reduction of feature dimensions as well as a further enhancement of classification performance." @default.
- W4315702438 created "2023-01-12" @default.
- W4315702438 creator A5022658693 @default.
- W4315702438 creator A5049500386 @default.
- W4315702438 creator A5083401633 @default.
- W4315702438 date "2023-01-12" @default.
- W4315702438 modified "2023-09-30" @default.
- W4315702438 title "Deep Feature Engineering in Colposcopy Image Recognition: A Comparative Study" @default.
- W4315702438 cites W1618587350 @default.
- W4315702438 cites W1972048684 @default.
- W4315702438 cites W1979622938 @default.
- W4315702438 cites W1989243075 @default.
- W4315702438 cites W2020925091 @default.
- W4315702438 cites W2023277702 @default.
- W4315702438 cites W2033413423 @default.
- W4315702438 cites W2076242843 @default.
- W4315702438 cites W2100235303 @default.
- W4315702438 cites W2110527401 @default.
- W4315702438 cites W2128728535 @default.
- W4315702438 cites W2137234026 @default.
- W4315702438 cites W2162486038 @default.
- W4315702438 cites W2194775991 @default.
- W4315702438 cites W2405680777 @default.
- W4315702438 cites W2417748451 @default.
- W4315702438 cites W2496883346 @default.
- W4315702438 cites W2531409750 @default.
- W4315702438 cites W2787962493 @default.
- W4315702438 cites W2921080728 @default.
- W4315702438 cites W2963125010 @default.
- W4315702438 cites W2970722445 @default.
- W4315702438 cites W3008663655 @default.
- W4315702438 cites W3020074006 @default.
- W4315702438 cites W3106027361 @default.
- W4315702438 cites W3121939634 @default.
- W4315702438 cites W3128646645 @default.
- W4315702438 cites W3130039502 @default.
- W4315702438 cites W3156461423 @default.
- W4315702438 cites W4281669672 @default.
- W4315702438 cites W4298004869 @default.
- W4315702438 cites W4306839094 @default.
- W4315702438 cites W4308868318 @default.
- W4315702438 doi "https://doi.org/10.3390/bioengineering10010105" @default.
- W4315702438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36671677" @default.
- W4315702438 hasPublicationYear "2023" @default.
- W4315702438 type Work @default.
- W4315702438 citedByCount "3" @default.
- W4315702438 countsByYear W43157024382023 @default.
- W4315702438 crossrefType "journal-article" @default.
- W4315702438 hasAuthorship W4315702438A5022658693 @default.
- W4315702438 hasAuthorship W4315702438A5049500386 @default.
- W4315702438 hasAuthorship W4315702438A5083401633 @default.
- W4315702438 hasBestOaLocation W43157024381 @default.
- W4315702438 hasConcept C114614502 @default.
- W4315702438 hasConcept C119857082 @default.
- W4315702438 hasConcept C12267149 @default.
- W4315702438 hasConcept C138885662 @default.
- W4315702438 hasConcept C148483581 @default.
- W4315702438 hasConcept C153180895 @default.
- W4315702438 hasConcept C153874254 @default.
- W4315702438 hasConcept C154945302 @default.
- W4315702438 hasConcept C27438332 @default.
- W4315702438 hasConcept C2776401178 @default.
- W4315702438 hasConcept C33923547 @default.
- W4315702438 hasConcept C41008148 @default.
- W4315702438 hasConcept C41895202 @default.
- W4315702438 hasConcept C52622490 @default.
- W4315702438 hasConcept C69738355 @default.
- W4315702438 hasConcept C87619178 @default.
- W4315702438 hasConceptScore W4315702438C114614502 @default.
- W4315702438 hasConceptScore W4315702438C119857082 @default.
- W4315702438 hasConceptScore W4315702438C12267149 @default.
- W4315702438 hasConceptScore W4315702438C138885662 @default.
- W4315702438 hasConceptScore W4315702438C148483581 @default.
- W4315702438 hasConceptScore W4315702438C153180895 @default.
- W4315702438 hasConceptScore W4315702438C153874254 @default.
- W4315702438 hasConceptScore W4315702438C154945302 @default.
- W4315702438 hasConceptScore W4315702438C27438332 @default.
- W4315702438 hasConceptScore W4315702438C2776401178 @default.
- W4315702438 hasConceptScore W4315702438C33923547 @default.
- W4315702438 hasConceptScore W4315702438C41008148 @default.
- W4315702438 hasConceptScore W4315702438C41895202 @default.
- W4315702438 hasConceptScore W4315702438C52622490 @default.
- W4315702438 hasConceptScore W4315702438C69738355 @default.
- W4315702438 hasConceptScore W4315702438C87619178 @default.
- W4315702438 hasIssue "1" @default.
- W4315702438 hasLocation W43157024381 @default.
- W4315702438 hasLocation W43157024382 @default.
- W4315702438 hasLocation W43157024383 @default.
- W4315702438 hasOpenAccess W4315702438 @default.
- W4315702438 hasPrimaryLocation W43157024381 @default.
- W4315702438 hasRelatedWork W1756315871 @default.
- W4315702438 hasRelatedWork W1966997960 @default.
- W4315702438 hasRelatedWork W1980511770 @default.
- W4315702438 hasRelatedWork W1984671715 @default.
- W4315702438 hasRelatedWork W2146076056 @default.
- W4315702438 hasRelatedWork W2151879849 @default.
- W4315702438 hasRelatedWork W2380927352 @default.
- W4315702438 hasRelatedWork W2601157893 @default.