Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315702503> ?p ?o ?g. }
- W4315702503 endingPage "1036" @default.
- W4315702503 startingPage "1036" @default.
- W4315702503 abstract "The reliability analysis system is currently evolving, and reliability analysis efforts are also focusing more on correctness and efficiency. The effectiveness of the active learning Kriging metamodel for the investigation of structural system reliability has been demonstrated. In order to effectively predict failure probability, a semi-parallel active learning method based on Kriging (SPAK) is developed in this study. The process creates a novel learning function called UA, which takes the correlation between training points and samples into account. The UA function has been developed from the U function but is distinct from it. The UA function improves the original U function, which pays too much attention to the area near the threshold and the accuracy of the surrogate model is improved. The semi-parallel learning method is then put forth, and it works since UA and U functions are correlated. One or two training points will be added sparingly during the model learning iteration. It effectively lowers the required training points and iteration durations and increases the effectiveness of model building. Finally, three numerical examples and one engineering application are carried out to show the precision and effectiveness of the suggested method. In application, evaluation efficiency is increased by at least 14.5% and iteration efficiency increased by 35.7%. It can be found that the proposed algorithm is valuable for engineering applications." @default.
- W4315702503 created "2023-01-12" @default.
- W4315702503 creator A5007154393 @default.
- W4315702503 creator A5032447166 @default.
- W4315702503 creator A5035339773 @default.
- W4315702503 creator A5036963612 @default.
- W4315702503 creator A5047036161 @default.
- W4315702503 date "2023-01-12" @default.
- W4315702503 modified "2023-10-16" @default.
- W4315702503 title "A Semi-Parallel Active Learning Method Based on Kriging for Structural Reliability Analysis" @default.
- W4315702503 cites W1030614780 @default.
- W4315702503 cites W1510052597 @default.
- W4315702503 cites W1996498620 @default.
- W4315702503 cites W2000571173 @default.
- W4315702503 cites W2000774120 @default.
- W4315702503 cites W2007535697 @default.
- W4315702503 cites W2029138893 @default.
- W4315702503 cites W2031295804 @default.
- W4315702503 cites W2043653481 @default.
- W4315702503 cites W2051159254 @default.
- W4315702503 cites W2096285034 @default.
- W4315702503 cites W2314675611 @default.
- W4315702503 cites W2327037011 @default.
- W4315702503 cites W2474753915 @default.
- W4315702503 cites W2483957145 @default.
- W4315702503 cites W2520879866 @default.
- W4315702503 cites W2536410644 @default.
- W4315702503 cites W2609456856 @default.
- W4315702503 cites W2756055782 @default.
- W4315702503 cites W2788111379 @default.
- W4315702503 cites W2908794637 @default.
- W4315702503 cites W2912811129 @default.
- W4315702503 cites W2917209141 @default.
- W4315702503 cites W2920209184 @default.
- W4315702503 cites W2920296662 @default.
- W4315702503 cites W2922446902 @default.
- W4315702503 cites W2939254391 @default.
- W4315702503 cites W2942271347 @default.
- W4315702503 cites W2955178413 @default.
- W4315702503 cites W2955851813 @default.
- W4315702503 cites W2955857670 @default.
- W4315702503 cites W2963105841 @default.
- W4315702503 cites W3000877573 @default.
- W4315702503 cites W3093449505 @default.
- W4315702503 cites W3120439486 @default.
- W4315702503 cites W3122431067 @default.
- W4315702503 cites W3127570262 @default.
- W4315702503 cites W3134803598 @default.
- W4315702503 cites W3160732527 @default.
- W4315702503 cites W3172118941 @default.
- W4315702503 cites W3181772292 @default.
- W4315702503 cites W3184700118 @default.
- W4315702503 cites W3191109278 @default.
- W4315702503 cites W3200398861 @default.
- W4315702503 cites W3204813890 @default.
- W4315702503 cites W3215723149 @default.
- W4315702503 cites W4220873401 @default.
- W4315702503 cites W4223427381 @default.
- W4315702503 cites W4224304115 @default.
- W4315702503 cites W4281785291 @default.
- W4315702503 cites W4286779491 @default.
- W4315702503 cites W4288046264 @default.
- W4315702503 cites W4288421192 @default.
- W4315702503 cites W4289947812 @default.
- W4315702503 cites W4292622222 @default.
- W4315702503 cites W3203235190 @default.
- W4315702503 doi "https://doi.org/10.3390/app13021036" @default.
- W4315702503 hasPublicationYear "2023" @default.
- W4315702503 type Work @default.
- W4315702503 citedByCount "0" @default.
- W4315702503 crossrefType "journal-article" @default.
- W4315702503 hasAuthorship W4315702503A5007154393 @default.
- W4315702503 hasAuthorship W4315702503A5032447166 @default.
- W4315702503 hasAuthorship W4315702503A5035339773 @default.
- W4315702503 hasAuthorship W4315702503A5036963612 @default.
- W4315702503 hasAuthorship W4315702503A5047036161 @default.
- W4315702503 hasBestOaLocation W43157025031 @default.
- W4315702503 hasConcept C111919701 @default.
- W4315702503 hasConcept C11413529 @default.
- W4315702503 hasConcept C119857082 @default.
- W4315702503 hasConcept C121332964 @default.
- W4315702503 hasConcept C127413603 @default.
- W4315702503 hasConcept C131675550 @default.
- W4315702503 hasConcept C14036430 @default.
- W4315702503 hasConcept C154945302 @default.
- W4315702503 hasConcept C163258240 @default.
- W4315702503 hasConcept C199360897 @default.
- W4315702503 hasConcept C200601418 @default.
- W4315702503 hasConcept C41008148 @default.
- W4315702503 hasConcept C43214815 @default.
- W4315702503 hasConcept C55439883 @default.
- W4315702503 hasConcept C62520636 @default.
- W4315702503 hasConcept C78458016 @default.
- W4315702503 hasConcept C81692654 @default.
- W4315702503 hasConcept C86610423 @default.
- W4315702503 hasConcept C86803240 @default.
- W4315702503 hasConcept C98045186 @default.
- W4315702503 hasConceptScore W4315702503C111919701 @default.