Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315703048> ?p ?o ?g. }
- W4315703048 endingPage "254" @default.
- W4315703048 startingPage "243" @default.
- W4315703048 abstract "This study aimed to explore the value of deep learning (DL)-assisted quantitative susceptibility mapping (QSM) in glioma grading and molecular subtyping. Forty-two patients with gliomas, who underwent preoperative T2 fluid-attenuated inversion recovery (T2 FLAIR), contrast-enhanced T1-weighted imaging (T1WI + C), and QSM scanning at 3.0T magnetic resonance imaging (MRI) were included in this study. Histopathology and immunohistochemistry staining were used to determine glioma grades, and isocitrate dehydrogenase (IDH) 1 and alpha thalassemia/mental retardation syndrome X-linked gene (ATRX) subtypes. Tumor segmentation was performed manually using Insight Toolkit-SNAP program ( www.itksnap.org ). An inception convolutional neural network (CNN) with a subsequent linear layer was employed as the training encoder to capture multi-scale features from MRI slices. Fivefold cross-validation was utilized as the training strategy (seven samples for each fold), and the ratio of sample size of the training, validation, and test dataset was 4:1:1. The performance was evaluated by the accuracy and area under the curve (AUC). With the inception CNN, single modal of QSM showed better performance in differentiating glioblastomas (GBM) and other grade gliomas (OGG, grade II–III), and predicting IDH1 mutation and ATRX loss (accuracy: 0.80, 0.77, 0.60) than either T2 FLAIR (0.69, 0.57, 0.54) or T1WI + C (0.74, 0.57, 0.46). When combining three modalities, compared with any single modality, the best AUC/accuracy/F1-scores were reached in grading gliomas (OGG and GBM: 0.91/0.89/0.87, low-grade and high-grade gliomas: 0.83/0.86/0.81), predicting IDH1 mutation (0.88/0.89/0.85), and predicting ATRX loss (0.78/0.71/0.67). As a supplement to conventional MRI, DL-assisted QSM is a promising molecular imaging method to evaluate glioma grades, IDH1 mutation, and ATRX loss." @default.
- W4315703048 created "2023-01-12" @default.
- W4315703048 creator A5004207122 @default.
- W4315703048 creator A5029146991 @default.
- W4315703048 creator A5031920195 @default.
- W4315703048 creator A5032740817 @default.
- W4315703048 creator A5033455453 @default.
- W4315703048 creator A5036976293 @default.
- W4315703048 creator A5042580034 @default.
- W4315703048 creator A5051610627 @default.
- W4315703048 creator A5051980254 @default.
- W4315703048 creator A5057342168 @default.
- W4315703048 creator A5065332465 @default.
- W4315703048 creator A5079024995 @default.
- W4315703048 creator A5085580911 @default.
- W4315703048 date "2023-01-05" @default.
- W4315703048 modified "2023-10-13" @default.
- W4315703048 title "Deep Learning-Assisted Quantitative Susceptibility Mapping as a Tool for Grading and Molecular Subtyping of Gliomas" @default.
- W4315703048 cites W1897243882 @default.
- W4315703048 cites W2008602421 @default.
- W4315703048 cites W2040787239 @default.
- W4315703048 cites W2053194730 @default.
- W4315703048 cites W2072579321 @default.
- W4315703048 cites W2108900334 @default.
- W4315703048 cites W2112587190 @default.
- W4315703048 cites W2135465849 @default.
- W4315703048 cites W2150298956 @default.
- W4315703048 cites W2159661815 @default.
- W4315703048 cites W2168290350 @default.
- W4315703048 cites W2228222153 @default.
- W4315703048 cites W2287840016 @default.
- W4315703048 cites W2297267460 @default.
- W4315703048 cites W2322783123 @default.
- W4315703048 cites W2366536035 @default.
- W4315703048 cites W2543050677 @default.
- W4315703048 cites W2566753678 @default.
- W4315703048 cites W2593271907 @default.
- W4315703048 cites W2594324890 @default.
- W4315703048 cites W2600027672 @default.
- W4315703048 cites W2610403529 @default.
- W4315703048 cites W2733153170 @default.
- W4315703048 cites W2750770088 @default.
- W4315703048 cites W2756318887 @default.
- W4315703048 cites W2768545635 @default.
- W4315703048 cites W2803760365 @default.
- W4315703048 cites W2804850886 @default.
- W4315703048 cites W2892163151 @default.
- W4315703048 cites W2892362776 @default.
- W4315703048 cites W2896181905 @default.
- W4315703048 cites W2896723628 @default.
- W4315703048 cites W2906634945 @default.
- W4315703048 cites W2923221258 @default.
- W4315703048 cites W2926648474 @default.
- W4315703048 cites W2944078162 @default.
- W4315703048 cites W2945830658 @default.
- W4315703048 cites W2985429380 @default.
- W4315703048 cites W3037986676 @default.
- W4315703048 cites W3216717225 @default.
- W4315703048 cites W4211105004 @default.
- W4315703048 doi "https://doi.org/10.1007/s43657-022-00087-6" @default.
- W4315703048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37325712" @default.
- W4315703048 hasPublicationYear "2023" @default.
- W4315703048 type Work @default.
- W4315703048 citedByCount "1" @default.
- W4315703048 countsByYear W43157030482023 @default.
- W4315703048 crossrefType "journal-article" @default.
- W4315703048 hasAuthorship W4315703048A5004207122 @default.
- W4315703048 hasAuthorship W4315703048A5029146991 @default.
- W4315703048 hasAuthorship W4315703048A5031920195 @default.
- W4315703048 hasAuthorship W4315703048A5032740817 @default.
- W4315703048 hasAuthorship W4315703048A5033455453 @default.
- W4315703048 hasAuthorship W4315703048A5036976293 @default.
- W4315703048 hasAuthorship W4315703048A5042580034 @default.
- W4315703048 hasAuthorship W4315703048A5051610627 @default.
- W4315703048 hasAuthorship W4315703048A5051980254 @default.
- W4315703048 hasAuthorship W4315703048A5057342168 @default.
- W4315703048 hasAuthorship W4315703048A5065332465 @default.
- W4315703048 hasAuthorship W4315703048A5079024995 @default.
- W4315703048 hasAuthorship W4315703048A5085580911 @default.
- W4315703048 hasBestOaLocation W43157030481 @default.
- W4315703048 hasConcept C101070640 @default.
- W4315703048 hasConcept C104317684 @default.
- W4315703048 hasConcept C126838900 @default.
- W4315703048 hasConcept C142724271 @default.
- W4315703048 hasConcept C143409427 @default.
- W4315703048 hasConcept C181199279 @default.
- W4315703048 hasConcept C185592680 @default.
- W4315703048 hasConcept C18903297 @default.
- W4315703048 hasConcept C199360897 @default.
- W4315703048 hasConcept C2776689207 @default.
- W4315703048 hasConcept C2777150147 @default.
- W4315703048 hasConcept C2777286243 @default.
- W4315703048 hasConcept C2778227246 @default.
- W4315703048 hasConcept C2989005 @default.
- W4315703048 hasConcept C41008148 @default.
- W4315703048 hasConcept C501734568 @default.
- W4315703048 hasConcept C502942594 @default.
- W4315703048 hasConcept C55493867 @default.