Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315703075> ?p ?o ?g. }
- W4315703075 endingPage "1932" @default.
- W4315703075 startingPage "1924" @default.
- W4315703075 abstract "Research on metabolic heterogeneity provides an important basis for the study of the molecular mechanism of a disease and personalized treatment. The screening of metabolism-related sub-regions that affect disease development is essential for the more focused exploration on disease progress aberrant phenotypes, even carcinogenesis and metastasis. The mass spectrometry imaging (MSI) technique has distinct advantages to reveal the heterogeneity of an organism based on in situ molecular profiles. The challenge of heterogeneous analysis has been to perform an objective identification among biological tissues with different characteristics. By introducing the divide-and-conquer strategy to architecture design and application, we establish here a flexible unsupervised deep learning model, called divide-and-conquer (dc)-DeepMSI, for metabolic heterogeneity analysis from MSI data without prior knowledge of histology. dc-DeepMSI can be used to identify either spatially contiguous regions of interest (ROIs) or spatially sporadic ROIs by designing two specific modes, spat-contig and spat-spor. Comparison results on fetus mouse data demonstrate that the dc-DeepMSI outperforms state-of-the-art MSI segmentation methods. We demonstrate that the novel learning strategy successfully obtained sub-regions that are statistically linked to the invasion status and molecular phenotypes of breast cancer as well as organizing principles during developmental phase." @default.
- W4315703075 created "2023-01-12" @default.
- W4315703075 creator A5001760074 @default.
- W4315703075 creator A5014394467 @default.
- W4315703075 creator A5017021107 @default.
- W4315703075 creator A5026323681 @default.
- W4315703075 creator A5031026079 @default.
- W4315703075 creator A5031816528 @default.
- W4315703075 creator A5035470459 @default.
- W4315703075 creator A5038766133 @default.
- W4315703075 creator A5057535865 @default.
- W4315703075 creator A5066629372 @default.
- W4315703075 date "2023-01-12" @default.
- W4315703075 modified "2023-10-14" @default.
- W4315703075 title "Divide and Conquer: A Flexible Deep Learning Strategy for Exploring Metabolic Heterogeneity from Mass Spectrometry Imaging Data" @default.
- W4315703075 cites W1975701262 @default.
- W4315703075 cites W2011701638 @default.
- W4315703075 cites W2036381632 @default.
- W4315703075 cites W2038487359 @default.
- W4315703075 cites W2039946906 @default.
- W4315703075 cites W2059527510 @default.
- W4315703075 cites W2069412624 @default.
- W4315703075 cites W2096027508 @default.
- W4315703075 cites W2100495367 @default.
- W4315703075 cites W2135046866 @default.
- W4315703075 cites W2147214095 @default.
- W4315703075 cites W2257575442 @default.
- W4315703075 cites W2345381093 @default.
- W4315703075 cites W2523000921 @default.
- W4315703075 cites W2530976429 @default.
- W4315703075 cites W2561045520 @default.
- W4315703075 cites W2611214388 @default.
- W4315703075 cites W2782047564 @default.
- W4315703075 cites W2785612404 @default.
- W4315703075 cites W2886511294 @default.
- W4315703075 cites W2905485852 @default.
- W4315703075 cites W2919115771 @default.
- W4315703075 cites W2966602080 @default.
- W4315703075 cites W2969567510 @default.
- W4315703075 cites W2979874034 @default.
- W4315703075 cites W3017194027 @default.
- W4315703075 cites W3043119035 @default.
- W4315703075 cites W3081911304 @default.
- W4315703075 cites W3099193570 @default.
- W4315703075 cites W3100967665 @default.
- W4315703075 cites W3134761005 @default.
- W4315703075 cites W3147595666 @default.
- W4315703075 cites W3174422331 @default.
- W4315703075 cites W3181434855 @default.
- W4315703075 cites W4212868616 @default.
- W4315703075 cites W4229335244 @default.
- W4315703075 doi "https://doi.org/10.1021/acs.analchem.2c04045" @default.
- W4315703075 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36633187" @default.
- W4315703075 hasPublicationYear "2023" @default.
- W4315703075 type Work @default.
- W4315703075 citedByCount "2" @default.
- W4315703075 countsByYear W43157030752023 @default.
- W4315703075 crossrefType "journal-article" @default.
- W4315703075 hasAuthorship W4315703075A5001760074 @default.
- W4315703075 hasAuthorship W4315703075A5014394467 @default.
- W4315703075 hasAuthorship W4315703075A5017021107 @default.
- W4315703075 hasAuthorship W4315703075A5026323681 @default.
- W4315703075 hasAuthorship W4315703075A5031026079 @default.
- W4315703075 hasAuthorship W4315703075A5031816528 @default.
- W4315703075 hasAuthorship W4315703075A5035470459 @default.
- W4315703075 hasAuthorship W4315703075A5038766133 @default.
- W4315703075 hasAuthorship W4315703075A5057535865 @default.
- W4315703075 hasAuthorship W4315703075A5066629372 @default.
- W4315703075 hasBestOaLocation W43157030751 @default.
- W4315703075 hasConcept C104317684 @default.
- W4315703075 hasConcept C11413529 @default.
- W4315703075 hasConcept C116834253 @default.
- W4315703075 hasConcept C119857082 @default.
- W4315703075 hasConcept C127716648 @default.
- W4315703075 hasConcept C153180895 @default.
- W4315703075 hasConcept C154945302 @default.
- W4315703075 hasConcept C162356407 @default.
- W4315703075 hasConcept C185592680 @default.
- W4315703075 hasConcept C24066741 @default.
- W4315703075 hasConcept C41008148 @default.
- W4315703075 hasConcept C43617362 @default.
- W4315703075 hasConcept C55493867 @default.
- W4315703075 hasConcept C59822182 @default.
- W4315703075 hasConcept C70721500 @default.
- W4315703075 hasConcept C71559656 @default.
- W4315703075 hasConcept C86803240 @default.
- W4315703075 hasConcept C89600930 @default.
- W4315703075 hasConceptScore W4315703075C104317684 @default.
- W4315703075 hasConceptScore W4315703075C11413529 @default.
- W4315703075 hasConceptScore W4315703075C116834253 @default.
- W4315703075 hasConceptScore W4315703075C119857082 @default.
- W4315703075 hasConceptScore W4315703075C127716648 @default.
- W4315703075 hasConceptScore W4315703075C153180895 @default.
- W4315703075 hasConceptScore W4315703075C154945302 @default.
- W4315703075 hasConceptScore W4315703075C162356407 @default.
- W4315703075 hasConceptScore W4315703075C185592680 @default.
- W4315703075 hasConceptScore W4315703075C24066741 @default.
- W4315703075 hasConceptScore W4315703075C41008148 @default.