Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315703354> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4315703354 endingPage "9" @default.
- W4315703354 startingPage "1" @default.
- W4315703354 abstract "Building an efficient and effective credit scorer for enterprises is an important and urgent demand in the cross-border e-commerce industry. In this paper, we present a framework to build a credit scorer using e-commerce data integrated from various sources. First, an improved dependency graph approach is proposed to recognize distinct records in the dataset. Then, we apply logistic regression using a prejudice remover regularizer to train the model, preceded by predictor preparation through binning and evaluating their information value. Lastly, we build the credit scorer according to the coefficients of the model. We implement our framework on a dataset from the official customs database and a large cross-border e-commerce platform. The empirical results demonstrate that the scorer built by our methodology can be used to effectively evaluate enterprises, while also removing prejudice against small and medium enterprises to a certain extent." @default.
- W4315703354 created "2023-01-12" @default.
- W4315703354 creator A5010526348 @default.
- W4315703354 creator A5035273331 @default.
- W4315703354 creator A5058010974 @default.
- W4315703354 creator A5067265615 @default.
- W4315703354 date "2023-01-12" @default.
- W4315703354 modified "2023-09-30" @default.
- W4315703354 title "Toward an Efficient and Effective Credit Scorer for Cross-Border E-Commerce Enterprises" @default.
- W4315703354 cites W1961345416 @default.
- W4315703354 cites W1966960760 @default.
- W4315703354 cites W1968023063 @default.
- W4315703354 cites W1971547695 @default.
- W4315703354 cites W1991529651 @default.
- W4315703354 cites W2011441697 @default.
- W4315703354 cites W2017416182 @default.
- W4315703354 cites W2029864452 @default.
- W4315703354 cites W2036216970 @default.
- W4315703354 cites W2044782954 @default.
- W4315703354 cites W2046020929 @default.
- W4315703354 cites W2052390074 @default.
- W4315703354 cites W2052611008 @default.
- W4315703354 cites W2067566391 @default.
- W4315703354 cites W2085099553 @default.
- W4315703354 cites W2089811952 @default.
- W4315703354 cites W2093829413 @default.
- W4315703354 cites W2103780778 @default.
- W4315703354 cites W2111625757 @default.
- W4315703354 cites W2158068969 @default.
- W4315703354 cites W2162179509 @default.
- W4315703354 cites W2748025215 @default.
- W4315703354 cites W2922407963 @default.
- W4315703354 cites W3146417010 @default.
- W4315703354 cites W4254788633 @default.
- W4315703354 doi "https://doi.org/10.1155/2023/5281050" @default.
- W4315703354 hasPublicationYear "2023" @default.
- W4315703354 type Work @default.
- W4315703354 citedByCount "0" @default.
- W4315703354 crossrefType "journal-article" @default.
- W4315703354 hasAuthorship W4315703354A5010526348 @default.
- W4315703354 hasAuthorship W4315703354A5035273331 @default.
- W4315703354 hasAuthorship W4315703354A5058010974 @default.
- W4315703354 hasAuthorship W4315703354A5067265615 @default.
- W4315703354 hasBestOaLocation W43157033541 @default.
- W4315703354 hasConcept C107062074 @default.
- W4315703354 hasConcept C119857082 @default.
- W4315703354 hasConcept C124101348 @default.
- W4315703354 hasConcept C132525143 @default.
- W4315703354 hasConcept C151956035 @default.
- W4315703354 hasConcept C154945302 @default.
- W4315703354 hasConcept C15744967 @default.
- W4315703354 hasConcept C19768560 @default.
- W4315703354 hasConcept C2522767166 @default.
- W4315703354 hasConcept C41008148 @default.
- W4315703354 hasConcept C77805123 @default.
- W4315703354 hasConcept C80444323 @default.
- W4315703354 hasConceptScore W4315703354C107062074 @default.
- W4315703354 hasConceptScore W4315703354C119857082 @default.
- W4315703354 hasConceptScore W4315703354C124101348 @default.
- W4315703354 hasConceptScore W4315703354C132525143 @default.
- W4315703354 hasConceptScore W4315703354C151956035 @default.
- W4315703354 hasConceptScore W4315703354C154945302 @default.
- W4315703354 hasConceptScore W4315703354C15744967 @default.
- W4315703354 hasConceptScore W4315703354C19768560 @default.
- W4315703354 hasConceptScore W4315703354C2522767166 @default.
- W4315703354 hasConceptScore W4315703354C41008148 @default.
- W4315703354 hasConceptScore W4315703354C77805123 @default.
- W4315703354 hasConceptScore W4315703354C80444323 @default.
- W4315703354 hasLocation W43157033541 @default.
- W4315703354 hasOpenAccess W4315703354 @default.
- W4315703354 hasPrimaryLocation W43157033541 @default.
- W4315703354 hasRelatedWork W1529400504 @default.
- W4315703354 hasRelatedWork W2101452068 @default.
- W4315703354 hasRelatedWork W2351267244 @default.
- W4315703354 hasRelatedWork W2360554257 @default.
- W4315703354 hasRelatedWork W2390438373 @default.
- W4315703354 hasRelatedWork W2888625260 @default.
- W4315703354 hasRelatedWork W63071447 @default.
- W4315703354 hasRelatedWork W65617392 @default.
- W4315703354 hasRelatedWork W83176488 @default.
- W4315703354 hasRelatedWork W2169928498 @default.
- W4315703354 hasVolume "2023" @default.
- W4315703354 isParatext "false" @default.
- W4315703354 isRetracted "false" @default.
- W4315703354 workType "article" @default.