Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315703503> ?p ?o ?g. }
- W4315703503 abstract "Sharp large deviation estimates for stochastic differential equations with small noise, based on minimizing the Freidlin-Wentzell action functional under appropriate boundary conditions, can be obtained by integrating certain matrix Riccati differential equations along the large deviation minimizers or instantons, either forward or backward in time. Previous works in this direction often rely on the existence of isolated minimizers with positive definite second variation. By adopting techniques from field theory and explicitly evaluating the large deviation prefactors as functional determinant ratios using Forman's theorem, we extend the approach to general systems where degenerate submanifolds of minimizers exist. The key technique for this is a boundary-type regularization of the second variation operator. This extension is particularly relevant if the system possesses continuous symmetries that are broken by the instantons. We find that removing the vanishing eigenvalues associated with the zero modes is possible within the Riccati formulation and amounts to modifying the initial or final conditions and evaluation of the Riccati matrices. We apply our results in multiple examples including a dynamical phase transition for the average surface height in short-time large deviations of the one-dimensional Kardar-Parisi-Zhang equation with flat initial profile." @default.
- W4315703503 created "2023-01-12" @default.
- W4315703503 creator A5017531939 @default.
- W4315703503 creator A5084177125 @default.
- W4315703503 creator A5084480345 @default.
- W4315703503 date "2023-01-09" @default.
- W4315703503 modified "2023-10-09" @default.
- W4315703503 title "Symmetries and Zero Modes in Sample Path Large Deviations" @default.
- W4315703503 cites W1544127299 @default.
- W4315703503 cites W1765823062 @default.
- W4315703503 cites W1966893379 @default.
- W4315703503 cites W1968481081 @default.
- W4315703503 cites W1972195088 @default.
- W4315703503 cites W1972633005 @default.
- W4315703503 cites W1985537847 @default.
- W4315703503 cites W1986864574 @default.
- W4315703503 cites W1987154173 @default.
- W4315703503 cites W1995406800 @default.
- W4315703503 cites W2007446150 @default.
- W4315703503 cites W2010585829 @default.
- W4315703503 cites W2017259752 @default.
- W4315703503 cites W2026169595 @default.
- W4315703503 cites W2028078838 @default.
- W4315703503 cites W2037315394 @default.
- W4315703503 cites W2040060987 @default.
- W4315703503 cites W2040809398 @default.
- W4315703503 cites W2057980421 @default.
- W4315703503 cites W2067956344 @default.
- W4315703503 cites W2074937619 @default.
- W4315703503 cites W2077626691 @default.
- W4315703503 cites W2082241859 @default.
- W4315703503 cites W2083486380 @default.
- W4315703503 cites W2085266415 @default.
- W4315703503 cites W2087496472 @default.
- W4315703503 cites W2104176564 @default.
- W4315703503 cites W2109233405 @default.
- W4315703503 cites W2116822454 @default.
- W4315703503 cites W2122657405 @default.
- W4315703503 cites W2123634285 @default.
- W4315703503 cites W2131099969 @default.
- W4315703503 cites W2141674151 @default.
- W4315703503 cites W2143055815 @default.
- W4315703503 cites W2168202098 @default.
- W4315703503 cites W2221260956 @default.
- W4315703503 cites W2313912395 @default.
- W4315703503 cites W2338816311 @default.
- W4315703503 cites W2462343225 @default.
- W4315703503 cites W2496901226 @default.
- W4315703503 cites W2595974427 @default.
- W4315703503 cites W2607432770 @default.
- W4315703503 cites W2616133146 @default.
- W4315703503 cites W2763251131 @default.
- W4315703503 cites W2788207842 @default.
- W4315703503 cites W2885315947 @default.
- W4315703503 cites W2888318048 @default.
- W4315703503 cites W2921828818 @default.
- W4315703503 cites W2963784336 @default.
- W4315703503 cites W2963857309 @default.
- W4315703503 cites W2994794760 @default.
- W4315703503 cites W3017233986 @default.
- W4315703503 cites W3019846098 @default.
- W4315703503 cites W3045864679 @default.
- W4315703503 cites W3047053332 @default.
- W4315703503 cites W3099363385 @default.
- W4315703503 cites W3103293640 @default.
- W4315703503 cites W3103897655 @default.
- W4315703503 cites W3104650913 @default.
- W4315703503 cites W3105123535 @default.
- W4315703503 cites W3106463498 @default.
- W4315703503 cites W3122184121 @default.
- W4315703503 cites W3129490551 @default.
- W4315703503 cites W3145457821 @default.
- W4315703503 cites W3175555341 @default.
- W4315703503 cites W3193225025 @default.
- W4315703503 cites W3193354133 @default.
- W4315703503 cites W3195498616 @default.
- W4315703503 cites W3209610702 @default.
- W4315703503 cites W3217633079 @default.
- W4315703503 cites W4210714137 @default.
- W4315703503 cites W4210869902 @default.
- W4315703503 cites W4229370348 @default.
- W4315703503 cites W4245744231 @default.
- W4315703503 cites W4281678314 @default.
- W4315703503 cites W4297917143 @default.
- W4315703503 doi "https://doi.org/10.1007/s10955-022-03051-w" @default.
- W4315703503 hasPublicationYear "2023" @default.
- W4315703503 type Work @default.
- W4315703503 citedByCount "0" @default.
- W4315703503 crossrefType "journal-article" @default.
- W4315703503 hasAuthorship W4315703503A5017531939 @default.
- W4315703503 hasAuthorship W4315703503A5084177125 @default.
- W4315703503 hasAuthorship W4315703503A5084480345 @default.
- W4315703503 hasBestOaLocation W43157035031 @default.
- W4315703503 hasConcept C104317684 @default.
- W4315703503 hasConcept C105795698 @default.
- W4315703503 hasConcept C121332964 @default.
- W4315703503 hasConcept C134306372 @default.
- W4315703503 hasConcept C158448853 @default.
- W4315703503 hasConcept C158693339 @default.
- W4315703503 hasConcept C17020691 @default.