Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315704943> ?p ?o ?g. }
- W4315704943 endingPage "9514" @default.
- W4315704943 startingPage "9490" @default.
- W4315704943 abstract "Importance sampling (IS) is a powerful Monte Carlo methodology for the approximation of intractable integrals, very often involving a target probability distribution. The performance of IS heavily depends on the appropriate selection of the proposal distributions where the samples are simulated from. In this paper, we propose an adaptive importance sampler, called GRAMIS, that iteratively improves the set of proposals. The algorithm exploits geometric information of the target to adapt the location and scale parameters of those proposals. Moreover, in order to allow for a cooperative adaptation, a repulsion term is introduced that favors a coordinated exploration of the state space. This translates into a more diverse exploration and a better approximation of the target via the mixture of proposals. Moreover, we provide a theoretical justification of the repulsion term. We show the good performance of GRAMIS in two problems where the target has a challenging shape and cannot be easily approximated by a standard uni-modal proposal." @default.
- W4315704943 created "2023-01-12" @default.
- W4315704943 creator A5010428900 @default.
- W4315704943 creator A5016290792 @default.
- W4315704943 creator A5062777204 @default.
- W4315704943 creator A5085691944 @default.
- W4315704943 date "2023-09-01" @default.
- W4315704943 modified "2023-10-18" @default.
- W4315704943 title "Gradient-based adaptive importance samplers" @default.
- W4315704943 cites W1525846267 @default.
- W4315704943 cites W1539591727 @default.
- W4315704943 cites W1545319692 @default.
- W4315704943 cites W1556278552 @default.
- W4315704943 cites W1665662210 @default.
- W4315704943 cites W1774344329 @default.
- W4315704943 cites W187762159 @default.
- W4315704943 cites W1979969656 @default.
- W4315704943 cites W1983452151 @default.
- W4315704943 cites W1995780830 @default.
- W4315704943 cites W2006722592 @default.
- W4315704943 cites W2040196349 @default.
- W4315704943 cites W2042513913 @default.
- W4315704943 cites W2082261407 @default.
- W4315704943 cites W2082399300 @default.
- W4315704943 cites W2092264912 @default.
- W4315704943 cites W2094509095 @default.
- W4315704943 cites W2179435707 @default.
- W4315704943 cites W2272328839 @default.
- W4315704943 cites W2516145422 @default.
- W4315704943 cites W2552349744 @default.
- W4315704943 cites W2566924527 @default.
- W4315704943 cites W2575742565 @default.
- W4315704943 cites W2735102987 @default.
- W4315704943 cites W2791673642 @default.
- W4315704943 cites W2801210103 @default.
- W4315704943 cites W2806458225 @default.
- W4315704943 cites W2807398400 @default.
- W4315704943 cites W2902039302 @default.
- W4315704943 cites W2924980092 @default.
- W4315704943 cites W2956353133 @default.
- W4315704943 cites W2967832472 @default.
- W4315704943 cites W2977850935 @default.
- W4315704943 cites W3022123134 @default.
- W4315704943 cites W3087402115 @default.
- W4315704943 cites W3098203061 @default.
- W4315704943 cites W3098404235 @default.
- W4315704943 cites W3103126047 @default.
- W4315704943 cites W3124691892 @default.
- W4315704943 cites W3125726451 @default.
- W4315704943 cites W3142984884 @default.
- W4315704943 cites W4206045574 @default.
- W4315704943 cites W4226365931 @default.
- W4315704943 cites W4256431090 @default.
- W4315704943 doi "https://doi.org/10.1016/j.jfranklin.2023.06.041" @default.
- W4315704943 hasPublicationYear "2023" @default.
- W4315704943 type Work @default.
- W4315704943 citedByCount "0" @default.
- W4315704943 crossrefType "journal-article" @default.
- W4315704943 hasAuthorship W4315704943A5010428900 @default.
- W4315704943 hasAuthorship W4315704943A5016290792 @default.
- W4315704943 hasAuthorship W4315704943A5062777204 @default.
- W4315704943 hasAuthorship W4315704943A5085691944 @default.
- W4315704943 hasBestOaLocation W43157049431 @default.
- W4315704943 hasConcept C105795698 @default.
- W4315704943 hasConcept C106131492 @default.
- W4315704943 hasConcept C111919701 @default.
- W4315704943 hasConcept C11413529 @default.
- W4315704943 hasConcept C119857082 @default.
- W4315704943 hasConcept C120665830 @default.
- W4315704943 hasConcept C121332964 @default.
- W4315704943 hasConcept C126255220 @default.
- W4315704943 hasConcept C139807058 @default.
- W4315704943 hasConcept C140779682 @default.
- W4315704943 hasConcept C149441793 @default.
- W4315704943 hasConcept C165696696 @default.
- W4315704943 hasConcept C177264268 @default.
- W4315704943 hasConcept C185592680 @default.
- W4315704943 hasConcept C188027245 @default.
- W4315704943 hasConcept C19499675 @default.
- W4315704943 hasConcept C199360897 @default.
- W4315704943 hasConcept C2778572836 @default.
- W4315704943 hasConcept C2778755073 @default.
- W4315704943 hasConcept C2781395549 @default.
- W4315704943 hasConcept C31972630 @default.
- W4315704943 hasConcept C33923547 @default.
- W4315704943 hasConcept C38652104 @default.
- W4315704943 hasConcept C41008148 @default.
- W4315704943 hasConcept C52740198 @default.
- W4315704943 hasConcept C61797465 @default.
- W4315704943 hasConcept C62520636 @default.
- W4315704943 hasConcept C71139939 @default.
- W4315704943 hasConcept C81917197 @default.
- W4315704943 hasConceptScore W4315704943C105795698 @default.
- W4315704943 hasConceptScore W4315704943C106131492 @default.
- W4315704943 hasConceptScore W4315704943C111919701 @default.
- W4315704943 hasConceptScore W4315704943C11413529 @default.
- W4315704943 hasConceptScore W4315704943C119857082 @default.
- W4315704943 hasConceptScore W4315704943C120665830 @default.