Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315705072> ?p ?o ?g. }
- W4315705072 abstract "Imaging mass spectrometry (IMS) is a powerful analytical technique widely used in biology, chemistry, and materials science fields that continue to expand. IMS provides a qualitative compositional analysis and spatial mapping with high chemical specificity. The spatial mapping information can be 2D or 3D depending on the analysis technique employed. Due to the combination of complex mass spectra coupled with spatial information, large high-dimensional datasets (hyperspectral) are often produced. Therefore, the use of automated computational methods for an exploratory analysis is highly beneficial. The fast-paced development of artificial intelligence (AI) and machine learning (ML) tools has received significant attention in recent years. These tools, in principle, can enable the unification of data collection and analysis into a single pipeline to make sampling and analysis decisions on the go. There are various ML approaches that have been applied to IMS data over the last decade. In this review, we discuss recent examples of the common unsupervised (principal component analysis, non-negative matrix factorization, k-means clustering, uniform manifold approximation and projection), supervised (random forest, logistic regression, XGboost, support vector machine), and other methods applied to various IMS datasets in the past five years. The information from this review will be useful for specialists from both IMS and ML fields since it summarizes current and representative studies of computational ML-based exploratory methods for IMS." @default.
- W4315705072 created "2023-01-12" @default.
- W4315705072 creator A5031852572 @default.
- W4315705072 creator A5039044523 @default.
- W4315705072 creator A5053312287 @default.
- W4315705072 creator A5054848814 @default.
- W4315705072 creator A5058362762 @default.
- W4315705072 creator A5059110757 @default.
- W4315705072 creator A5068304057 @default.
- W4315705072 creator A5069640022 @default.
- W4315705072 creator A5091579076 @default.
- W4315705072 date "2023-01-12" @default.
- W4315705072 modified "2023-09-26" @default.
- W4315705072 title "A review on recent machine learning applications for imaging mass spectrometry studies" @default.
- W4315705072 cites W1902027874 @default.
- W4315705072 cites W1964245045 @default.
- W4315705072 cites W1964507401 @default.
- W4315705072 cites W1965028221 @default.
- W4315705072 cites W1968280571 @default.
- W4315705072 cites W1968863791 @default.
- W4315705072 cites W1970625632 @default.
- W4315705072 cites W1971008317 @default.
- W4315705072 cites W1974681473 @default.
- W4315705072 cites W1977116165 @default.
- W4315705072 cites W1977341480 @default.
- W4315705072 cites W1981994493 @default.
- W4315705072 cites W1984132727 @default.
- W4315705072 cites W1990517717 @default.
- W4315705072 cites W1998523900 @default.
- W4315705072 cites W1999237497 @default.
- W4315705072 cites W2007147590 @default.
- W4315705072 cites W2011701638 @default.
- W4315705072 cites W2025180097 @default.
- W4315705072 cites W2028421926 @default.
- W4315705072 cites W2030370751 @default.
- W4315705072 cites W2032217388 @default.
- W4315705072 cites W2032608305 @default.
- W4315705072 cites W2034367397 @default.
- W4315705072 cites W2039938944 @default.
- W4315705072 cites W2040879982 @default.
- W4315705072 cites W2045256553 @default.
- W4315705072 cites W2054391455 @default.
- W4315705072 cites W2059383728 @default.
- W4315705072 cites W2064987368 @default.
- W4315705072 cites W2071003339 @default.
- W4315705072 cites W2071516191 @default.
- W4315705072 cites W2072074442 @default.
- W4315705072 cites W2073503722 @default.
- W4315705072 cites W2076839830 @default.
- W4315705072 cites W2080720117 @default.
- W4315705072 cites W2081480383 @default.
- W4315705072 cites W2082677489 @default.
- W4315705072 cites W2085903081 @default.
- W4315705072 cites W2086110133 @default.
- W4315705072 cites W2086557185 @default.
- W4315705072 cites W2091161903 @default.
- W4315705072 cites W2093658509 @default.
- W4315705072 cites W2100910093 @default.
- W4315705072 cites W2102859086 @default.
- W4315705072 cites W2105403296 @default.
- W4315705072 cites W2110420651 @default.
- W4315705072 cites W2112523116 @default.
- W4315705072 cites W2121668219 @default.
- W4315705072 cites W2122765504 @default.
- W4315705072 cites W2127740715 @default.
- W4315705072 cites W2128040385 @default.
- W4315705072 cites W2129265015 @default.
- W4315705072 cites W2134287207 @default.
- W4315705072 cites W2146769004 @default.
- W4315705072 cites W2150577353 @default.
- W4315705072 cites W2150593711 @default.
- W4315705072 cites W2151594000 @default.
- W4315705072 cites W2153263373 @default.
- W4315705072 cites W2158423544 @default.
- W4315705072 cites W2159935409 @default.
- W4315705072 cites W2160062394 @default.
- W4315705072 cites W2160216174 @default.
- W4315705072 cites W2160977044 @default.
- W4315705072 cites W2164338148 @default.
- W4315705072 cites W2165268571 @default.
- W4315705072 cites W2167384542 @default.
- W4315705072 cites W2257575442 @default.
- W4315705072 cites W2284200877 @default.
- W4315705072 cites W2295695353 @default.
- W4315705072 cites W2313170850 @default.
- W4315705072 cites W2318997606 @default.
- W4315705072 cites W2331543083 @default.
- W4315705072 cites W2334419113 @default.
- W4315705072 cites W2346087495 @default.
- W4315705072 cites W2498776581 @default.
- W4315705072 cites W2516989317 @default.
- W4315705072 cites W2530976429 @default.
- W4315705072 cites W2531363307 @default.
- W4315705072 cites W2550553840 @default.
- W4315705072 cites W2590077393 @default.
- W4315705072 cites W2592050176 @default.
- W4315705072 cites W2766494800 @default.
- W4315705072 cites W2782330912 @default.
- W4315705072 cites W2789388409 @default.
- W4315705072 cites W2790298468 @default.