Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315705084> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4315705084 abstract "Abstract With the rapid growth of informatics systems’ technology in this modern age, the Internet of Things (IoT) has become more valuable and vital to everyday life in many ways. IoT applications are now more popular than they used to be due to the availability of many gadgets that work as IoT enablers, including smartwatches, smartphones, security cameras, and smart sensors. However, the insecure nature of IoT devices has led to several difficulties, one of which is distributed denial-of-service (DDoS) attacks. IoT systems have several security limitations due to their disreputability characteristics, like dynamic communication between IoT devices. The dynamic communications resulted from the limited resources of these devices, such as their data storage and processing units. Recently, many attempts have been made to develop intelligent models to protect IoT networks against DDoS attacks. The main ongoing research issue is developing a model capable of protecting the network from DDoS attacks that is sensitive to various classes of DDoS and can recognize legitimate traffic to avoid false alarms. Subsequently, this study proposes combining three deep learning algorithms, namely recurrent neural network (RNN), long short-term memory (LSTM)-RNN, and convolutional neural network (CNN), to build a bidirectional CNN-BiLSTM DDoS detection model. The RNN, CNN, LSTM, and CNN-BiLSTM are implemented and tested to determine the most effective model against DDoS attacks that can accurately detect and distinguish DDoS from legitimate traffic. The intrusion detection evaluation dataset (CICIDS2017) is used to provide more realistic detection. The CICIDS2017 dataset includes benign and up-to-date examples of typical attacks, closely matching real-world data of Packet Capture. The four models are tested and assessed using Confusion Metrix against four commonly used criteria: accuracy, precision, recall, and F -measure. The performance of the models is quite effective as they obtain an accuracy rate of around 99.00%, except for the CNN model, which achieves an accuracy of 98.82%. The CNN-BiLSTM achieves the best accuracy of 99.76% and precision of 98.90%." @default.
- W4315705084 created "2023-01-12" @default.
- W4315705084 creator A5000594866 @default.
- W4315705084 creator A5016511172 @default.
- W4315705084 creator A5025537403 @default.
- W4315705084 creator A5051435803 @default.
- W4315705084 creator A5087553385 @default.
- W4315705084 date "2023-01-01" @default.
- W4315705084 modified "2023-10-17" @default.
- W4315705084 title "Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks" @default.
- W4315705084 cites W2131774270 @default.
- W4315705084 cites W2155883880 @default.
- W4315705084 cites W2552174487 @default.
- W4315705084 cites W2735090526 @default.
- W4315705084 cites W2786979006 @default.
- W4315705084 cites W2789828921 @default.
- W4315705084 cites W2808316254 @default.
- W4315705084 cites W2921019731 @default.
- W4315705084 cites W2937711216 @default.
- W4315705084 cites W2956030019 @default.
- W4315705084 cites W2982145560 @default.
- W4315705084 cites W3080132629 @default.
- W4315705084 cites W3105750153 @default.
- W4315705084 cites W3120086307 @default.
- W4315705084 cites W3126533776 @default.
- W4315705084 cites W3126814579 @default.
- W4315705084 cites W3134031829 @default.
- W4315705084 cites W3135519345 @default.
- W4315705084 cites W3139482648 @default.
- W4315705084 cites W3160455160 @default.
- W4315705084 cites W3196438265 @default.
- W4315705084 cites W3204524944 @default.
- W4315705084 cites W4211244664 @default.
- W4315705084 cites W4220934382 @default.
- W4315705084 doi "https://doi.org/10.1515/jisys-2022-0155" @default.
- W4315705084 hasPublicationYear "2023" @default.
- W4315705084 type Work @default.
- W4315705084 citedByCount "2" @default.
- W4315705084 countsByYear W43157050842023 @default.
- W4315705084 crossrefType "journal-article" @default.
- W4315705084 hasAuthorship W4315705084A5000594866 @default.
- W4315705084 hasAuthorship W4315705084A5016511172 @default.
- W4315705084 hasAuthorship W4315705084A5025537403 @default.
- W4315705084 hasAuthorship W4315705084A5051435803 @default.
- W4315705084 hasAuthorship W4315705084A5087553385 @default.
- W4315705084 hasBestOaLocation W43157050841 @default.
- W4315705084 hasConcept C108583219 @default.
- W4315705084 hasConcept C110875604 @default.
- W4315705084 hasConcept C119857082 @default.
- W4315705084 hasConcept C120314980 @default.
- W4315705084 hasConcept C120865594 @default.
- W4315705084 hasConcept C136764020 @default.
- W4315705084 hasConcept C147168706 @default.
- W4315705084 hasConcept C154945302 @default.
- W4315705084 hasConcept C31258907 @default.
- W4315705084 hasConcept C35525427 @default.
- W4315705084 hasConcept C38652104 @default.
- W4315705084 hasConcept C38822068 @default.
- W4315705084 hasConcept C41008148 @default.
- W4315705084 hasConcept C43639116 @default.
- W4315705084 hasConcept C50644808 @default.
- W4315705084 hasConcept C81363708 @default.
- W4315705084 hasConcept C81860439 @default.
- W4315705084 hasConceptScore W4315705084C108583219 @default.
- W4315705084 hasConceptScore W4315705084C110875604 @default.
- W4315705084 hasConceptScore W4315705084C119857082 @default.
- W4315705084 hasConceptScore W4315705084C120314980 @default.
- W4315705084 hasConceptScore W4315705084C120865594 @default.
- W4315705084 hasConceptScore W4315705084C136764020 @default.
- W4315705084 hasConceptScore W4315705084C147168706 @default.
- W4315705084 hasConceptScore W4315705084C154945302 @default.
- W4315705084 hasConceptScore W4315705084C31258907 @default.
- W4315705084 hasConceptScore W4315705084C35525427 @default.
- W4315705084 hasConceptScore W4315705084C38652104 @default.
- W4315705084 hasConceptScore W4315705084C38822068 @default.
- W4315705084 hasConceptScore W4315705084C41008148 @default.
- W4315705084 hasConceptScore W4315705084C43639116 @default.
- W4315705084 hasConceptScore W4315705084C50644808 @default.
- W4315705084 hasConceptScore W4315705084C81363708 @default.
- W4315705084 hasConceptScore W4315705084C81860439 @default.
- W4315705084 hasIssue "1" @default.
- W4315705084 hasLocation W43157050841 @default.
- W4315705084 hasOpenAccess W4315705084 @default.
- W4315705084 hasPrimaryLocation W43157050841 @default.
- W4315705084 hasRelatedWork W2187421104 @default.
- W4315705084 hasRelatedWork W2353151461 @default.
- W4315705084 hasRelatedWork W2360429410 @default.
- W4315705084 hasRelatedWork W2376172429 @default.
- W4315705084 hasRelatedWork W2787075961 @default.
- W4315705084 hasRelatedWork W3026018975 @default.
- W4315705084 hasRelatedWork W3142394876 @default.
- W4315705084 hasRelatedWork W3189446050 @default.
- W4315705084 hasRelatedWork W4376486703 @default.
- W4315705084 hasRelatedWork W2189542741 @default.
- W4315705084 hasVolume "32" @default.
- W4315705084 isParatext "false" @default.
- W4315705084 isRetracted "false" @default.
- W4315705084 workType "article" @default.