Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315705817> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4315705817 abstract "Ellipses, parabolas and hyperbolas all have beautiful reflective properties. However, an intuitive explanation for why they have those properties has been lacking. There exist many mathematical proofs, but they tend to involve several analytical steps or geometrical constructions, making them unintuitive and hard to understand. Here, a simpler explanation is presented which only requires following the paths of light rays, and examining local paths that move from one point on a conic to a nearby one. First, a light-ray is followed as it runs along one of the legs of an isosceles triangle, and then reflects off a mirror that is parallel to the triangle's base. It bounces back along the path of the triangle's other leg. Next, a path is examined, moving from an arbitrary point on a conic section curve to a nearby point on the same curve. This path consists of two equal-length straight line steps, with each step following one of the constraints that defines the curve. For example, on an ellipse, defined by the sum of the distances to the two foci remaining constant, the path starts at a point on the ellipse, moves a distance delta directly away from one focus, then makes a second equal-length step directly towards the second focus. These two steps form the legs of precisely the sort of isosceles triangle described above, with its base running along the path of the curve. A light ray following the legs of that triangle gets reflected directly from one focus to the other. As the triangle shrinks towards zero, the reflection point converges onto the actual curve. Exactly the same argument also explains the reflections of parabolas and hyperbolas. Surprisingly, this explanation does not seem to have appeared previously in the long history of writings about conics. It is hoped that it will help to make the reflective properties of conic sections easier to understand and to explain." @default.
- W4315705817 created "2023-01-12" @default.
- W4315705817 creator A5000464976 @default.
- W4315705817 date "2023-01-09" @default.
- W4315705817 modified "2023-09-24" @default.
- W4315705817 title "A simpler explanation of the reflective properties of conic sections, by following light rays along local isosceles paths" @default.
- W4315705817 doi "https://doi.org/10.48550/arxiv.2301.03695" @default.
- W4315705817 hasPublicationYear "2023" @default.
- W4315705817 type Work @default.
- W4315705817 citedByCount "0" @default.
- W4315705817 crossrefType "posted-content" @default.
- W4315705817 hasAuthorship W4315705817A5000464976 @default.
- W4315705817 hasBestOaLocation W43157058171 @default.
- W4315705817 hasConcept C108598597 @default.
- W4315705817 hasConcept C111919701 @default.
- W4315705817 hasConcept C120665830 @default.
- W4315705817 hasConcept C121332964 @default.
- W4315705817 hasConcept C134306372 @default.
- W4315705817 hasConcept C145050668 @default.
- W4315705817 hasConcept C192209626 @default.
- W4315705817 hasConcept C199360897 @default.
- W4315705817 hasConcept C2524010 @default.
- W4315705817 hasConcept C2777735758 @default.
- W4315705817 hasConcept C2780129039 @default.
- W4315705817 hasConcept C28719098 @default.
- W4315705817 hasConcept C33923547 @default.
- W4315705817 hasConcept C41008148 @default.
- W4315705817 hasConcept C74261601 @default.
- W4315705817 hasConcept C98653994 @default.
- W4315705817 hasConceptScore W4315705817C108598597 @default.
- W4315705817 hasConceptScore W4315705817C111919701 @default.
- W4315705817 hasConceptScore W4315705817C120665830 @default.
- W4315705817 hasConceptScore W4315705817C121332964 @default.
- W4315705817 hasConceptScore W4315705817C134306372 @default.
- W4315705817 hasConceptScore W4315705817C145050668 @default.
- W4315705817 hasConceptScore W4315705817C192209626 @default.
- W4315705817 hasConceptScore W4315705817C199360897 @default.
- W4315705817 hasConceptScore W4315705817C2524010 @default.
- W4315705817 hasConceptScore W4315705817C2777735758 @default.
- W4315705817 hasConceptScore W4315705817C2780129039 @default.
- W4315705817 hasConceptScore W4315705817C28719098 @default.
- W4315705817 hasConceptScore W4315705817C33923547 @default.
- W4315705817 hasConceptScore W4315705817C41008148 @default.
- W4315705817 hasConceptScore W4315705817C74261601 @default.
- W4315705817 hasConceptScore W4315705817C98653994 @default.
- W4315705817 hasLocation W43157058171 @default.
- W4315705817 hasOpenAccess W4315705817 @default.
- W4315705817 hasPrimaryLocation W43157058171 @default.
- W4315705817 hasRelatedWork W1032920515 @default.
- W4315705817 hasRelatedWork W1489851746 @default.
- W4315705817 hasRelatedWork W161889145 @default.
- W4315705817 hasRelatedWork W1939105908 @default.
- W4315705817 hasRelatedWork W2318502422 @default.
- W4315705817 hasRelatedWork W2324703843 @default.
- W4315705817 hasRelatedWork W2327050003 @default.
- W4315705817 hasRelatedWork W2739746487 @default.
- W4315705817 hasRelatedWork W3020972773 @default.
- W4315705817 hasRelatedWork W3034162989 @default.
- W4315705817 isParatext "false" @default.
- W4315705817 isRetracted "false" @default.
- W4315705817 workType "article" @default.