Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315750466> ?p ?o ?g. }
- W4315750466 endingPage "104662" @default.
- W4315750466 startingPage "104662" @default.
- W4315750466 abstract "In this modeling project, employing various machine learning methods, the thermophysical properties of phase change material (PCM) containing three nanoparticles were predicted. PCM with Multi-Walled Carbon Nanotube (MWCNT), Graphene Nanoplatelets (GNP), and nano-graphite (NG) were considered as nano-enhanced PCM, and their experimental data were extracted from the literature. The data consisted of thermal conductivity and latent heat of 100 thermal cycles measured for 1, 2, and 3 wt.% of nanoparticles in the myristic acid (MA) as PCM. This research uses supervised algorithms such as k-nearest neighbors (KNN), Automatic relevance determination (ARD), and least absolute shrinkage and selection operator (LASSO) for regression, creating formulas and making models. This research using the ARD regression to find the relationship between solid-state and liquid-state for three materials (GNPs/MA, MWCNTs/MA, and NG/MA) with the R-Squared value of 0.999 for all materials. The MSE of the ARD algorithms for the materials respectively is 1 × 10−9, 9 × 10−10, and 6 × 10−10. Using the MA, which is the primary material, creates the polynomial regression for GNPs/MA, MWCNTs/MA, and NG/MA, and the R-Squared values are 0.981, 0.984, and 0.981 and the MSE, respectively is 0.000159351, 0.000016945, and 0.000022425. The KNN algorithm is used to make the model for this subject, and the R-Squared values are 0.985, 0.988, and 0.988. The LASSO regression is used to make the linear regression for the relationship between melting-state and freezing-state, and the R-Squared value is 0.999 for all materials. The MSE of the LASSO method for these materials of this part respectively is 0.000176203, 0.000000545, and 0.000005035." @default.
- W4315750466 created "2023-01-13" @default.
- W4315750466 creator A5016480216 @default.
- W4315750466 creator A5035516939 @default.
- W4315750466 creator A5071928573 @default.
- W4315750466 creator A5072179330 @default.
- W4315750466 creator A5090052899 @default.
- W4315750466 date "2023-07-01" @default.
- W4315750466 modified "2023-10-15" @default.
- W4315750466 title "Thermophysical properties prediction of carbon-based nano-enhanced phase change material's using various machine learning methods" @default.
- W4315750466 cites W2047718404 @default.
- W4315750466 cites W2793742619 @default.
- W4315750466 cites W2899248402 @default.
- W4315750466 cites W2921935003 @default.
- W4315750466 cites W2950463968 @default.
- W4315750466 cites W2968179591 @default.
- W4315750466 cites W3003075903 @default.
- W4315750466 cites W3031102682 @default.
- W4315750466 cites W3037534404 @default.
- W4315750466 cites W3050057171 @default.
- W4315750466 cites W3118027640 @default.
- W4315750466 cites W3119572621 @default.
- W4315750466 cites W3122942328 @default.
- W4315750466 cites W3128863778 @default.
- W4315750466 cites W3133541835 @default.
- W4315750466 cites W3159619995 @default.
- W4315750466 cites W3161615503 @default.
- W4315750466 cites W3175089390 @default.
- W4315750466 cites W3181013390 @default.
- W4315750466 cites W3190115794 @default.
- W4315750466 cites W3203113342 @default.
- W4315750466 cites W3207455899 @default.
- W4315750466 cites W3215028612 @default.
- W4315750466 cites W4200082530 @default.
- W4315750466 cites W4200405289 @default.
- W4315750466 cites W4206161062 @default.
- W4315750466 cites W4210555168 @default.
- W4315750466 cites W4223958222 @default.
- W4315750466 cites W4224145176 @default.
- W4315750466 cites W4229335217 @default.
- W4315750466 cites W4283118728 @default.
- W4315750466 cites W4283817326 @default.
- W4315750466 cites W4283824006 @default.
- W4315750466 cites W4289201306 @default.
- W4315750466 cites W4310244363 @default.
- W4315750466 cites W4311918623 @default.
- W4315750466 doi "https://doi.org/10.1016/j.jtice.2022.104662" @default.
- W4315750466 hasPublicationYear "2023" @default.
- W4315750466 type Work @default.
- W4315750466 citedByCount "10" @default.
- W4315750466 countsByYear W43157504662023 @default.
- W4315750466 crossrefType "journal-article" @default.
- W4315750466 hasAuthorship W4315750466A5016480216 @default.
- W4315750466 hasAuthorship W4315750466A5035516939 @default.
- W4315750466 hasAuthorship W4315750466A5071928573 @default.
- W4315750466 hasAuthorship W4315750466A5072179330 @default.
- W4315750466 hasAuthorship W4315750466A5090052899 @default.
- W4315750466 hasConcept C105795698 @default.
- W4315750466 hasConcept C11413529 @default.
- W4315750466 hasConcept C119857082 @default.
- W4315750466 hasConcept C121332964 @default.
- W4315750466 hasConcept C136764020 @default.
- W4315750466 hasConcept C139945424 @default.
- W4315750466 hasConcept C154945302 @default.
- W4315750466 hasConcept C155672457 @default.
- W4315750466 hasConcept C171250308 @default.
- W4315750466 hasConcept C192562407 @default.
- W4315750466 hasConcept C33923547 @default.
- W4315750466 hasConcept C37616216 @default.
- W4315750466 hasConcept C41008148 @default.
- W4315750466 hasConcept C48921125 @default.
- W4315750466 hasConcept C513720949 @default.
- W4315750466 hasConcept C97355855 @default.
- W4315750466 hasConceptScore W4315750466C105795698 @default.
- W4315750466 hasConceptScore W4315750466C11413529 @default.
- W4315750466 hasConceptScore W4315750466C119857082 @default.
- W4315750466 hasConceptScore W4315750466C121332964 @default.
- W4315750466 hasConceptScore W4315750466C136764020 @default.
- W4315750466 hasConceptScore W4315750466C139945424 @default.
- W4315750466 hasConceptScore W4315750466C154945302 @default.
- W4315750466 hasConceptScore W4315750466C155672457 @default.
- W4315750466 hasConceptScore W4315750466C171250308 @default.
- W4315750466 hasConceptScore W4315750466C192562407 @default.
- W4315750466 hasConceptScore W4315750466C33923547 @default.
- W4315750466 hasConceptScore W4315750466C37616216 @default.
- W4315750466 hasConceptScore W4315750466C41008148 @default.
- W4315750466 hasConceptScore W4315750466C48921125 @default.
- W4315750466 hasConceptScore W4315750466C513720949 @default.
- W4315750466 hasConceptScore W4315750466C97355855 @default.
- W4315750466 hasLocation W43157504661 @default.
- W4315750466 hasOpenAccess W4315750466 @default.
- W4315750466 hasPrimaryLocation W43157504661 @default.
- W4315750466 hasRelatedWork W1576739978 @default.
- W4315750466 hasRelatedWork W1983849759 @default.
- W4315750466 hasRelatedWork W2065626222 @default.
- W4315750466 hasRelatedWork W2120609629 @default.
- W4315750466 hasRelatedWork W2212119398 @default.
- W4315750466 hasRelatedWork W2575795810 @default.