Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315750503> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4315750503 abstract "The Internet of Things (loT) and Machine Learning technologies are booming in the software industries and data digitalization in many fields related to automated industrial manufacturing and market trend analysis. Among the few advantages offered by these advances in technologies, is the foundation for tackling enormous information, ML, and distributed computing programming devices and software systems, for example in planning progressed data analytics in enterprises. Data analytics is an increased area of interest in the context of industrial automation and the growth of revenue generation in enterprises based on automated decision support systems. Therefore, this paper presents the role of loT and Machine Learning technologies to predict the data and robotics-based industry tools to innovate the concept of industry 4.0 and advanced versions of industry automation. Machine learning-based methods emphasize data analysis for future trend predictions. Industrial automation is demonstrated based on Internet of Things (loT) concepts. loT supports the development based on sensor connectivity based on M2M communication using internetworking. Cloud-based data storage is an additional advantage for enterprise data management. This paper focuses on the real-time integration of loT and ML-based learning methods for automated business solutions and growth in the era of industry 4.0." @default.
- W4315750503 created "2023-01-13" @default.
- W4315750503 creator A5041041454 @default.
- W4315750503 creator A5044736165 @default.
- W4315750503 creator A5045451244 @default.
- W4315750503 creator A5057358147 @default.
- W4315750503 creator A5072089603 @default.
- W4315750503 date "2022-12-01" @default.
- W4315750503 modified "2023-09-27" @default.
- W4315750503 title "Integration of loT for Industry Automation using Machine Learning Technique" @default.
- W4315750503 cites W2605859962 @default.
- W4315750503 cites W2751209853 @default.
- W4315750503 cites W2790123499 @default.
- W4315750503 cites W2808181409 @default.
- W4315750503 cites W2852300932 @default.
- W4315750503 cites W2908699940 @default.
- W4315750503 cites W2925674906 @default.
- W4315750503 cites W2945250888 @default.
- W4315750503 cites W2971136000 @default.
- W4315750503 cites W2979312760 @default.
- W4315750503 cites W2994982398 @default.
- W4315750503 cites W2999868547 @default.
- W4315750503 cites W3002869745 @default.
- W4315750503 cites W3016815190 @default.
- W4315750503 cites W3017008673 @default.
- W4315750503 cites W3035802957 @default.
- W4315750503 doi "https://doi.org/10.1109/icdi57181.2022.10007229" @default.
- W4315750503 hasPublicationYear "2022" @default.
- W4315750503 type Work @default.
- W4315750503 citedByCount "0" @default.
- W4315750503 crossrefType "proceedings-article" @default.
- W4315750503 hasAuthorship W4315750503A5041041454 @default.
- W4315750503 hasAuthorship W4315750503A5044736165 @default.
- W4315750503 hasAuthorship W4315750503A5045451244 @default.
- W4315750503 hasAuthorship W4315750503A5057358147 @default.
- W4315750503 hasAuthorship W4315750503A5072089603 @default.
- W4315750503 hasConcept C111919701 @default.
- W4315750503 hasConcept C115901376 @default.
- W4315750503 hasConcept C124101348 @default.
- W4315750503 hasConcept C127413603 @default.
- W4315750503 hasConcept C151730666 @default.
- W4315750503 hasConcept C154945302 @default.
- W4315750503 hasConcept C2522767166 @default.
- W4315750503 hasConcept C2777986313 @default.
- W4315750503 hasConcept C2779343474 @default.
- W4315750503 hasConcept C41008148 @default.
- W4315750503 hasConcept C75684735 @default.
- W4315750503 hasConcept C78519656 @default.
- W4315750503 hasConcept C79158427 @default.
- W4315750503 hasConcept C79974875 @default.
- W4315750503 hasConcept C86803240 @default.
- W4315750503 hasConceptScore W4315750503C111919701 @default.
- W4315750503 hasConceptScore W4315750503C115901376 @default.
- W4315750503 hasConceptScore W4315750503C124101348 @default.
- W4315750503 hasConceptScore W4315750503C127413603 @default.
- W4315750503 hasConceptScore W4315750503C151730666 @default.
- W4315750503 hasConceptScore W4315750503C154945302 @default.
- W4315750503 hasConceptScore W4315750503C2522767166 @default.
- W4315750503 hasConceptScore W4315750503C2777986313 @default.
- W4315750503 hasConceptScore W4315750503C2779343474 @default.
- W4315750503 hasConceptScore W4315750503C41008148 @default.
- W4315750503 hasConceptScore W4315750503C75684735 @default.
- W4315750503 hasConceptScore W4315750503C78519656 @default.
- W4315750503 hasConceptScore W4315750503C79158427 @default.
- W4315750503 hasConceptScore W4315750503C79974875 @default.
- W4315750503 hasConceptScore W4315750503C86803240 @default.
- W4315750503 hasLocation W43157505031 @default.
- W4315750503 hasOpenAccess W4315750503 @default.
- W4315750503 hasPrimaryLocation W43157505031 @default.
- W4315750503 hasRelatedWork W2080529815 @default.
- W4315750503 hasRelatedWork W3097243301 @default.
- W4315750503 hasRelatedWork W3114771222 @default.
- W4315750503 hasRelatedWork W3117911048 @default.
- W4315750503 hasRelatedWork W3171568351 @default.
- W4315750503 hasRelatedWork W3180337491 @default.
- W4315750503 hasRelatedWork W4200184607 @default.
- W4315750503 hasRelatedWork W4211081525 @default.
- W4315750503 hasRelatedWork W4214869855 @default.
- W4315750503 hasRelatedWork W4287605407 @default.
- W4315750503 isParatext "false" @default.
- W4315750503 isRetracted "false" @default.
- W4315750503 workType "article" @default.