Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315752707> ?p ?o ?g. }
- W4315752707 endingPage "332" @default.
- W4315752707 startingPage "325" @default.
- W4315752707 abstract "Globally, the number of people with diabetes mellitus has quadrupled in the past three decades, and approximately one in 11 adults worldwide have diabetes mellitus. Since both microvascular and macrovascular diseases in patients with diabetes predispose them to a lower quality of life as well as higher rates of mortality, managing blood glucose levels is of clinical relevance in diabetes care. Many classes of antihyperglycemic drugs are currently approved to treat hyperglycemia in patients with type 2 diabetes mellitus, with several new drugs having been developed during the last decade. Diabetes-related complications have been reduced substantially worldwide. Prioritization of therapeutic agents varies according to national guidelines. However, since the characteristics of participants in clinical trials differ from patients in actual clinical practice, it is difficult to apply the results of such trials to clinical practice. Machine learning approaches became highly topical issues in medicine along with rapid technological innovations in the fields of information and communication in the 1990s. However, adopting these technologies to support decision-making regarding drug treatment strategies for diabetes care has been slow. This review summarizes data from recent studies on the choice of drugs for type 2 diabetes mellitus focusing on machine learning approaches." @default.
- W4315752707 created "2023-01-13" @default.
- W4315752707 creator A5062390696 @default.
- W4315752707 creator A5072785004 @default.
- W4315752707 date "2023-05-31" @default.
- W4315752707 modified "2023-09-26" @default.
- W4315752707 title "Machine Learning Approach to Drug Treatment Strategy for Diabetes Care" @default.
- W4315752707 cites W1545732697 @default.
- W4315752707 cites W2006183964 @default.
- W4315752707 cites W2029028244 @default.
- W4315752707 cites W2039741453 @default.
- W4315752707 cites W2066891364 @default.
- W4315752707 cites W2145174926 @default.
- W4315752707 cites W2145821992 @default.
- W4315752707 cites W2147222003 @default.
- W4315752707 cites W2162708888 @default.
- W4315752707 cites W2188846692 @default.
- W4315752707 cites W2271771390 @default.
- W4315752707 cites W2399982291 @default.
- W4315752707 cites W2548196899 @default.
- W4315752707 cites W2569214105 @default.
- W4315752707 cites W2588363830 @default.
- W4315752707 cites W2738975713 @default.
- W4315752707 cites W2767087620 @default.
- W4315752707 cites W2774743973 @default.
- W4315752707 cites W2786503241 @default.
- W4315752707 cites W2786983438 @default.
- W4315752707 cites W2792983091 @default.
- W4315752707 cites W2804354698 @default.
- W4315752707 cites W2806853752 @default.
- W4315752707 cites W2886609621 @default.
- W4315752707 cites W2886801379 @default.
- W4315752707 cites W2895763047 @default.
- W4315752707 cites W2898192966 @default.
- W4315752707 cites W2900329012 @default.
- W4315752707 cites W2912100147 @default.
- W4315752707 cites W2913997948 @default.
- W4315752707 cites W2914527623 @default.
- W4315752707 cites W2934399013 @default.
- W4315752707 cites W2936842500 @default.
- W4315752707 cites W2969790209 @default.
- W4315752707 cites W2981121978 @default.
- W4315752707 cites W2985334076 @default.
- W4315752707 cites W2985452234 @default.
- W4315752707 cites W2999301272 @default.
- W4315752707 cites W3011491737 @default.
- W4315752707 cites W3017000889 @default.
- W4315752707 cites W3021007247 @default.
- W4315752707 cites W3043363778 @default.
- W4315752707 cites W3084252132 @default.
- W4315752707 cites W3121368818 @default.
- W4315752707 cites W3123700022 @default.
- W4315752707 cites W3125832735 @default.
- W4315752707 cites W3145524033 @default.
- W4315752707 cites W3152710649 @default.
- W4315752707 cites W3163731260 @default.
- W4315752707 cites W3165845449 @default.
- W4315752707 cites W3198570063 @default.
- W4315752707 cites W3198748474 @default.
- W4315752707 cites W4200088206 @default.
- W4315752707 cites W4200439235 @default.
- W4315752707 cites W4200511306 @default.
- W4315752707 cites W4220670584 @default.
- W4315752707 cites W4226339165 @default.
- W4315752707 cites W4283277252 @default.
- W4315752707 cites W46273423 @default.
- W4315752707 doi "https://doi.org/10.4093/dmj.2022.0349" @default.
- W4315752707 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36631990" @default.
- W4315752707 hasPublicationYear "2023" @default.
- W4315752707 type Work @default.
- W4315752707 citedByCount "0" @default.
- W4315752707 crossrefType "journal-article" @default.
- W4315752707 hasAuthorship W4315752707A5062390696 @default.
- W4315752707 hasAuthorship W4315752707A5072785004 @default.
- W4315752707 hasBestOaLocation W43157527071 @default.
- W4315752707 hasConcept C126322002 @default.
- W4315752707 hasConcept C134018914 @default.
- W4315752707 hasConcept C162324750 @default.
- W4315752707 hasConcept C17744445 @default.
- W4315752707 hasConcept C177713679 @default.
- W4315752707 hasConcept C199539241 @default.
- W4315752707 hasConcept C2777180221 @default.
- W4315752707 hasConcept C2777615720 @default.
- W4315752707 hasConcept C2779473830 @default.
- W4315752707 hasConcept C2779974597 @default.
- W4315752707 hasConcept C2780035454 @default.
- W4315752707 hasConcept C2910068830 @default.
- W4315752707 hasConcept C512399662 @default.
- W4315752707 hasConcept C535046627 @default.
- W4315752707 hasConcept C539667460 @default.
- W4315752707 hasConcept C555293320 @default.
- W4315752707 hasConcept C71924100 @default.
- W4315752707 hasConcept C98274493 @default.
- W4315752707 hasConceptScore W4315752707C126322002 @default.
- W4315752707 hasConceptScore W4315752707C134018914 @default.
- W4315752707 hasConceptScore W4315752707C162324750 @default.
- W4315752707 hasConceptScore W4315752707C17744445 @default.
- W4315752707 hasConceptScore W4315752707C177713679 @default.