Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315776986> ?p ?o ?g. }
- W4315776986 abstract "Abstract Competition is ubiquitous in microbial communities, shaping both their spatial and temporal structure and composition. Many classic minimal models, such as the Moran model, have been employed in ecology and evolutionary biology to understand the role of fixation and invasion in the maintenance of a population. Informed by recent experimental studies of cellular competition in confined spaces, we extend the Moran model to explicitly incorporate spatial exclusion through mechanical interactions among cells within a one-dimensional, open microchannel. The results of our spatial exclusion model differ significantly from those of its classical counterpart. The fixation/extinction probability of a species sharply depends on the species’ initial relative abundance, and the mean time to fixation is greatly accelerated, scaling logarithmically, rather than algebraically, with the system size. In non-neutral cases, spatial exclusion tends to attenuate the effects of fitness differences on the probability of fixation, and the fixation times increase as the relative fitness differences between species increase. Successful fixation by invasive species, whether through mutation or immigration, are also less probable on average than in the Moran model. Surprisingly, in the spatial exclusion model, successful fixations occur on average more rapidly in longer channels. The mean time to fixation heuristically arises from the boundary between populations performing either quasi-neutral diffusion, near a semi-stable fixed point, or quasi-deterministic avalanche dynamics away from the fixed point. These results, which can be tested in microfluidic monolayer devices, have implications for the maintenance of species diversity in dense bacterial ecosystems where spatial exclusion is central to the competition, such as in organized biofilms or intestinal crypts. The results may be broadly applied to any system displaying tug-of-war type dynamics with a region of quasi-neutral diffusion centered around regions of deterministic population collapse. Author summary Competition for territory between different species has far reaching consequences for the diversity and fate of bacterial communities. In this study, we theoretically and computationally study the competitive dynamics of two bacterial populations competing for space in confined environments. The model we develop extends classical models that have served as paradigms for understanding competitive dynamics but did not explicitly include spatial exclusion. We find that spatial effects drastically change the probability of one species successfully outcompeting the other and accelerates the mean time it takes for a species to exclude the other from the environment. In comparison to the predictions of population models that neglect spatial exclusion, species with higher selective advantages are less heavily favoured to outcompete their rival species. Moreover, spatial exclusion influences the success of an invasive species taking over a densely populated community. Compared to classical well-mixed models, there is a reduction in the effectiveness of an invaders fitness advantage at improving the chances of taking over the population. Our results show that spatial exclusion has rich and unexpected repercussions on species dominance and the long-time composition of populations. These must be considered when trying to understand complex bacterial ecosystems such as biofilms and intestinal flora." @default.
- W4315776986 created "2023-01-13" @default.
- W4315776986 creator A5043751013 @default.
- W4315776986 creator A5069632856 @default.
- W4315776986 creator A5070460978 @default.
- W4315776986 creator A5075141247 @default.
- W4315776986 date "2023-01-12" @default.
- W4315776986 modified "2023-10-14" @default.
- W4315776986 title "Spatial exclusion leads to tug-of-war ecological dynamics between competing species within microchannels" @default.
- W4315776986 cites W1694995535 @default.
- W4315776986 cites W1837149500 @default.
- W4315776986 cites W1902150932 @default.
- W4315776986 cites W1973939352 @default.
- W4315776986 cites W1981707597 @default.
- W4315776986 cites W1981892387 @default.
- W4315776986 cites W1983752209 @default.
- W4315776986 cites W1986398818 @default.
- W4315776986 cites W1986849245 @default.
- W4315776986 cites W1994889554 @default.
- W4315776986 cites W2016086732 @default.
- W4315776986 cites W2028678048 @default.
- W4315776986 cites W2033890928 @default.
- W4315776986 cites W2041061499 @default.
- W4315776986 cites W2041440463 @default.
- W4315776986 cites W2042193848 @default.
- W4315776986 cites W2044514249 @default.
- W4315776986 cites W2054609227 @default.
- W4315776986 cites W2056798056 @default.
- W4315776986 cites W2068537152 @default.
- W4315776986 cites W2069780164 @default.
- W4315776986 cites W2074002481 @default.
- W4315776986 cites W2076630747 @default.
- W4315776986 cites W2083377092 @default.
- W4315776986 cites W2085061065 @default.
- W4315776986 cites W2104721020 @default.
- W4315776986 cites W2106557091 @default.
- W4315776986 cites W2106976909 @default.
- W4315776986 cites W2109353395 @default.
- W4315776986 cites W2115933619 @default.
- W4315776986 cites W2117416206 @default.
- W4315776986 cites W2127399801 @default.
- W4315776986 cites W2128736190 @default.
- W4315776986 cites W2129163149 @default.
- W4315776986 cites W2142785933 @default.
- W4315776986 cites W2144440398 @default.
- W4315776986 cites W2146969372 @default.
- W4315776986 cites W2160361019 @default.
- W4315776986 cites W2165799971 @default.
- W4315776986 cites W2167855178 @default.
- W4315776986 cites W2168267127 @default.
- W4315776986 cites W2169175623 @default.
- W4315776986 cites W2214482550 @default.
- W4315776986 cites W2312851106 @default.
- W4315776986 cites W2322964557 @default.
- W4315776986 cites W2326574757 @default.
- W4315776986 cites W2329437071 @default.
- W4315776986 cites W2399777075 @default.
- W4315776986 cites W2549795979 @default.
- W4315776986 cites W2553095014 @default.
- W4315776986 cites W2566890378 @default.
- W4315776986 cites W2571404822 @default.
- W4315776986 cites W2606623351 @default.
- W4315776986 cites W2613021898 @default.
- W4315776986 cites W2766272099 @default.
- W4315776986 cites W2773156981 @default.
- W4315776986 cites W2793509509 @default.
- W4315776986 cites W2793562878 @default.
- W4315776986 cites W2894141422 @default.
- W4315776986 cites W2903131281 @default.
- W4315776986 cites W2915236932 @default.
- W4315776986 cites W2947171186 @default.
- W4315776986 cites W2948849558 @default.
- W4315776986 cites W2950276893 @default.
- W4315776986 cites W2950714739 @default.
- W4315776986 cites W2951228679 @default.
- W4315776986 cites W2951604240 @default.
- W4315776986 cites W2952788753 @default.
- W4315776986 cites W2969350907 @default.
- W4315776986 cites W3003984566 @default.
- W4315776986 cites W3007131243 @default.
- W4315776986 cites W3007321348 @default.
- W4315776986 cites W3092137802 @default.
- W4315776986 cites W3093994425 @default.
- W4315776986 cites W3102037011 @default.
- W4315776986 cites W3133224161 @default.
- W4315776986 cites W3139813702 @default.
- W4315776986 cites W3185187328 @default.
- W4315776986 cites W3200688828 @default.
- W4315776986 cites W4213279074 @default.
- W4315776986 cites W4220855359 @default.
- W4315776986 cites W4234011924 @default.
- W4315776986 cites W590791627 @default.
- W4315776986 doi "https://doi.org/10.1101/2023.01.10.523527" @default.
- W4315776986 hasPublicationYear "2023" @default.
- W4315776986 type Work @default.
- W4315776986 citedByCount "0" @default.
- W4315776986 crossrefType "posted-content" @default.
- W4315776986 hasAuthorship W4315776986A5043751013 @default.
- W4315776986 hasAuthorship W4315776986A5069632856 @default.
- W4315776986 hasAuthorship W4315776986A5070460978 @default.