Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315777190> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4315777190 endingPage "1037" @default.
- W4315777190 startingPage "1028" @default.
- W4315777190 abstract "Production scheduling is challenging and the body of literature addressing various variants of the problem is large. It can roughly be divided into two streams: The first stream addresses and generalizes established scheduling problems, being general in the sense that they are not only applicable in a particular industry. The second stream works on less generic scheduling approaches for real industry cases by enriching standard models with all the required realistic aspects, such as process overlapping or sequence dependent setup times. Furthermore, different approaches have different limitations in terms of the problem size that they can tackle. The rise of Industry 4.0 has lead to a significant increase in data collection activities and the gathered information is used to build larger and more complex models. Industrial use cases may consist of several thousand operations on a large variety of machines, while classical benchmark instances tend to range up to only a few hundred of operations. It is therefore necessary to identify and highlight approaches, that can meet the challenges of scheduling in the era of Industry 4.0 and are suitable to tackle large scale problems. In this work, we conduct a structured literature review on scheduling problems incorporating several real world aspects among a broad range of use cases. Based on the identified publications we find that advanced solution approaches for large scale scheduling problems usually belong to one out of three categories, namely metaheuristic methods, constraint programming and machine learning. Our review shows that comparably few contributions tackling (very) large scale problems exist, emphasizing the need for additional research in this field. We identify promising approaches for further research, such as powerful metaheuristics combining concepts of tabu search and genetic algorithms. We further discuss the possibility to enhance solution methods by integrating constraint programming concepts and investigating problem decomposition." @default.
- W4315777190 created "2023-01-13" @default.
- W4315777190 creator A5037046189 @default.
- W4315777190 creator A5058168938 @default.
- W4315777190 date "2023-01-01" @default.
- W4315777190 modified "2023-09-25" @default.
- W4315777190 title "Solving large scale industrial production scheduling problems with complex constraints: an overview of the state-of-the-art" @default.
- W4315777190 cites W1973044119 @default.
- W4315777190 cites W1973445991 @default.
- W4315777190 cites W2036786338 @default.
- W4315777190 cites W2087201864 @default.
- W4315777190 cites W2098650167 @default.
- W4315777190 cites W2131721561 @default.
- W4315777190 cites W2140742285 @default.
- W4315777190 cites W2227399030 @default.
- W4315777190 cites W2293490428 @default.
- W4315777190 cites W2572733028 @default.
- W4315777190 cites W2647153655 @default.
- W4315777190 cites W2731571249 @default.
- W4315777190 cites W2747561859 @default.
- W4315777190 cites W2786776401 @default.
- W4315777190 cites W2790098940 @default.
- W4315777190 cites W2791416164 @default.
- W4315777190 cites W2802562461 @default.
- W4315777190 cites W2896699005 @default.
- W4315777190 cites W2899426081 @default.
- W4315777190 cites W2901679457 @default.
- W4315777190 cites W2905418984 @default.
- W4315777190 cites W2911922644 @default.
- W4315777190 cites W2937599159 @default.
- W4315777190 cites W2952808052 @default.
- W4315777190 cites W2989902167 @default.
- W4315777190 cites W3005024004 @default.
- W4315777190 cites W3029416730 @default.
- W4315777190 cites W3036882732 @default.
- W4315777190 cites W3039856838 @default.
- W4315777190 cites W3082309043 @default.
- W4315777190 cites W3092208345 @default.
- W4315777190 cites W3108840691 @default.
- W4315777190 cites W3133401345 @default.
- W4315777190 cites W3138178192 @default.
- W4315777190 cites W3181710008 @default.
- W4315777190 cites W4200583838 @default.
- W4315777190 cites W4210377936 @default.
- W4315777190 cites W4225932723 @default.
- W4315777190 cites W4283797444 @default.
- W4315777190 cites W4290861662 @default.
- W4315777190 doi "https://doi.org/10.1016/j.procs.2022.12.301" @default.
- W4315777190 hasPublicationYear "2023" @default.
- W4315777190 type Work @default.
- W4315777190 citedByCount "1" @default.
- W4315777190 countsByYear W43157771902023 @default.
- W4315777190 crossrefType "journal-article" @default.
- W4315777190 hasAuthorship W4315777190A5037046189 @default.
- W4315777190 hasAuthorship W4315777190A5058168938 @default.
- W4315777190 hasBestOaLocation W43157771901 @default.
- W4315777190 hasConcept C126255220 @default.
- W4315777190 hasConcept C127413603 @default.
- W4315777190 hasConcept C13736549 @default.
- W4315777190 hasConcept C206729178 @default.
- W4315777190 hasConcept C33923547 @default.
- W4315777190 hasConcept C41008148 @default.
- W4315777190 hasConcept C42475967 @default.
- W4315777190 hasConceptScore W4315777190C126255220 @default.
- W4315777190 hasConceptScore W4315777190C127413603 @default.
- W4315777190 hasConceptScore W4315777190C13736549 @default.
- W4315777190 hasConceptScore W4315777190C206729178 @default.
- W4315777190 hasConceptScore W4315777190C33923547 @default.
- W4315777190 hasConceptScore W4315777190C41008148 @default.
- W4315777190 hasConceptScore W4315777190C42475967 @default.
- W4315777190 hasFunder F4320323031 @default.
- W4315777190 hasLocation W43157771901 @default.
- W4315777190 hasOpenAccess W4315777190 @default.
- W4315777190 hasPrimaryLocation W43157771901 @default.
- W4315777190 hasRelatedWork W1964836806 @default.
- W4315777190 hasRelatedWork W1980228679 @default.
- W4315777190 hasRelatedWork W1992741870 @default.
- W4315777190 hasRelatedWork W2019413296 @default.
- W4315777190 hasRelatedWork W2037792783 @default.
- W4315777190 hasRelatedWork W2380460642 @default.
- W4315777190 hasRelatedWork W2398138248 @default.
- W4315777190 hasRelatedWork W2546696010 @default.
- W4315777190 hasRelatedWork W29008652 @default.
- W4315777190 hasRelatedWork W2997221951 @default.
- W4315777190 hasVolume "217" @default.
- W4315777190 isParatext "false" @default.
- W4315777190 isRetracted "false" @default.
- W4315777190 workType "article" @default.